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From a mathematical perspective, radiation hydrodynamics can be thought of as a system
of hyperbolic balance laws with dual multiscale behavior (multiscale behavior associated
with the hyperbolic wave speeds as well as multiscale behavior associated with source
term relaxation). With this outlook in mind, this paper presents a hybrid Godunov method
for one-dimensional radiation hydrodynamics that is uniformly well behaved from the
photon free streaming (hyperbolic) limit through the weak equilibrium diffusion (para-
bolic) limit and to the strong equilibrium diffusion (hyperbolic) limit. Moreover, one finds
that the technique preserves certain asymptotic limits. The method incorporates a back-
ward Euler upwinding scheme for the radiation energy density Er and flux Fr as well as a
modified Godunov scheme for the material density q, momentum density m, and energy
density E.

The backward Euler upwinding scheme is first-order accurate and uses an implicit HLLE
flux function to temporally advance the radiation components according to the material
flow scale. The modified Godunov scheme is second-order accurate and directly couples
stiff source term effects to the hyperbolic structure of the system of balance laws. This
Godunov technique is composed of a predictor step that is based on Duhamel’s principle
and a corrector step that is based on Picard iteration. The Godunov scheme is explicit on
the material flow scale but is unsplit and fully couples matter and radiation without invok-
ing a diffusion-type approximation for radiation hydrodynamics. This technique derives
from earlier work by Miniati and Colella (2007) [41]. Numerical tests demonstrate that
the method is stable, robust, and accurate across various parameter regimes.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Radiation hydrodynamics is a dynamical description of fluid material interacting with electromagnetic radiation and is
appropriate whenever radiation governs the transport of energy and momentum in the fluid. Many phenomena in plasma
physics and astrophysics are governed by radiation hydrodynamics, some examples include: star formation, supernovae,
accretion disks, radiatively driven outflows, stellar convection, and inertial confinement fusion [5,37,40]. In these applica-
tions, the radiation field heterogeneously couples to the material dynamics such that radiative effects are strong in some
parts of the system and weak in other parts. These variations give rise to characteristically different dynamical properties
(i.e., advection versus diffusion behavior). The primary objective for developing the numerical technique presented in this
paper is to have a computational tool that accurately solves radiation hydrodynamical problems across a range of asymptotic
limits. The new algorithmic ideas are cast in such a way that they seem familiar with respect to classical Godunov schemes
and can be implemented in existing codes with minimal computational overhead. A future research endeavor is to combine
. All rights reserved.
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the hybrid Godunov method for radiation hydrodynamics with an existing code for MHD (magnetohydrodynamics) such as
Athena [52] and investigate full radiation MHD in multiple spatial dimensions.

Some of the initial research in developing numerical methods to solve radiation hydrodynamical problems was carried
out by Castor [4], Pomraning [44], Levermore and Pomraning [29], Mihalas and Klein [38], and Mihalas and Weibel-Mihalas
[40]. One of the simplest and most successful approaches used in astrophysics was the Zeus code of Stone et al. [53], which
relied on operator splitting and a Crank–Nicholson temporal finite difference scheme. Since the introduction of that code,
finite volume schemes (e.g. Godunov-type methods) have emerged as a powerful technique for solving hyperbolic conser-
vation laws (i.e., the mathematical framework describing radiation hydrodynamics) [27,28]. Moreover, this integral formu-
lation allows one to more naturally treat boundary conditions, capture shock waves and other discontinuous behavior,
investigate complex geometries and multi-dimensions, and implement adaptive mesh refinement [59]. Despite these advan-
tages, there have been significant difficulties in developing a Godunov method to accurately represent radiation hydrody-
namical behavior across a range of asymptotic limits. Earlier attempts to construct a Godunov-type technique either (i)
neglected the heterogeneity of the matter-radiation coupling and solved the system of equations in a specific limit [9,10],
(ii) were based on a model system [3,23], (iii) invoked artificial coupling terms that were based on the reference frame in
which the problem was solved [1] as pointed out by Lowrie and Morel [31], or (iv) used a variation of flux limited diffusion
[22,25,29,58]. Lowrie and Morel [31] was even critical of the likelihood of developing such a method for full radiation
hydrodynamics.

Developing a Godunov method for radiation hydrodynamics has been difficult because numerical difficulties arise from (i)
the reference frame one chooses for taking moments of the photon transport equation, (ii) multiscale waves, (iii) stiff source
terms, and (iv) solving a hierarchy of radiation transport moment equations to compute the variable tensor Eddington factor
f. The first difficulty occurs because one takes moments of the photon transport equation in order to define the radiation
quantities that interact with the material components of the system. One encounters problems with the radiation field’s spe-
cific intensity function I(m,n) which is governed by frame-dependent quantities, the radiation frequency m and directional
vector n. Here, one either casts the photon transport equation into the comoving frame (at rest with respect to the local fluid
velocity) and contends with complicated transport operators but simple interaction terms S(m,n); or one casts the photon
transport equation into the Eulerian frame (at rest with respect to the system as a whole) and contends with simple trans-
port operators but complicated interaction terms. The specific intensity is written below in the Eulerian frame, where c is the
speed of light and t is time:
1
c
@

@t
þ n � r

� �
Iðm;nÞ ¼ Sðm;nÞ: ð1Þ
The Eulerian frame approach is also referred to as the mixed frame approach if the radiation intensity is measured in the
Eulerian frame while the opacities r (embedded in the interaction terms) are measured in the comoving frame [6,31].
The second difficulty arises because although the transport operators have a simple formulation in the mixed/Eulerian frame,
the radiation quantities are still characterized by waves propagating at the speed of light c. This dynamical scale is signifi-
cantly larger than the speed of sound a1 which characterizes the material quantities in the absence of radiation, such var-
iation in propagation speeds defines the nature of multiscale waves associated with radiation hydrodynamics. It is important
to note that the reference frame one chooses to take moments of the photon transport equation does not affect how one
defines the material quantities. A mixed frame approach was adopted because the resulting equations most closely resemble
a system of hyperbolic balance laws which is advantageous for constructing a Godunov-type method. The third difficulty
occurs because in addition to defining balance laws for the radiation quantities, one must also add relativistic stiff source
terms that are correct to Oðu=cÞ to the right-hand-sides of the non-relativistic conservation laws for the material quantities
(i.e., Euler equations). These source terms are stiff because of the variation in time and length scales associated with radiation
hydrodynamical problems [38]. Having to contend with stiffness arising from some waves propagating at the speed of light
as well as source terms having large magnitudes, it is obvious to see how such numerical difficulties make conventional tech-
niques like operator splitting and the method of lines breakdown [27,28,56].

This paper presents a hybrid Godunov method that addresses the above numerical difficulties. The technique adopts a
mixed frame approach, includes the appropriate frame-dependent terms to Oðu=cÞ, is implicit with respect to the fastest
hyperbolic wave speeds, and semi-implicitly updates the stiff source terms. The paper proceeds in the following manner.
After defining the full system of equations for radiation hydrodynamics, the paper discusses what dynamics characterize
the various asymptotic limits. Then, the paper gives an overview of the hybrid Godunov method and explains certain numer-
ical properties that the algorithm possesses. The next three sections present the main algorithmic ideas behind the hybrid
Godunov method. Lastly, the paper describes numerical tests that demonstrate the technique to be stable, robust, and accu-
rate across various parameter regimes.
2. Radiation hydrodynamics

As presented in Lowrie et al. [33] and Lowrie and Morel [31], the system of equations for radiation hydrodynamics can be
non-dimensionalized with respect to the material flow scale so that one can compare hydrodynamical and radiation effects
as well as identify terms that are Oðu=cÞ [31,33]. This scaling gives two important parameters: C ¼ c=a1 which measures
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relativistic effects and P ¼ arT
4
1=q1a2

1 which measures how radiation affects material dynamics. Additionally, ar = 8p5k4/
15c3h3 = 7.57 � 10�15 erg cm�3 K�4 is a radiation constant, T1 is a reference material temperature in the absence of radiation,
and q1 is a reference material density in the absence of radiation. The full system of equations for radiation hydrodynamics
in the mixed frame that is correct to Oð1=CÞ is:
@q
@t
þr � ðmÞ ¼ 0; ð2Þ

@m
@t
þr � m�m

q

� �
þrp ¼ �P �rt Fr �

uEr þ u � Pr

C

� �
þ ra

u
C
ðT4 � ErÞ

� �
; ð3Þ

@E
@t
þr � ðEþ pÞm

q

� �
¼ �PC raðT4 � ErÞ þ ðra � rsÞ

u
C
� Fr �

uEr þ u � Pr

C

� �� �
; ð4Þ

@Er

@t
þ Cr � Fr ¼ C raðT4 � ErÞ þ ðra � rsÞ

u
C
� Fr �

uEr þ u � Pr

C

� �� �
; ð5Þ

@Fr

@t
þ Cr � Pr ¼ C �rt Fr �

uEr þ u � Pr

C

� �
þ ra

u
C
ðT4 � ErÞ

� �
; ð6Þ

Pr ¼ fEr ðclosure relationÞ: ð7Þ
For the material quantities, q is density, m is momentum density, p = (c � 1)e is pressure, E is energy density, and T is tem-
perature. For the radiation quantities, Er is energy density, Fr is flux, Pr is pressure, and f is the variable tensor Eddington fac-
tor. In the source terms, ra is the absorption cross section, rs is the scattering cross section, and rt = ra + rs is the total cross
section. f is used to close the hierarchy of radiation transport moment equations such that:
Er ¼
Z 1

0

I
n

Idndm; Fr ¼
Z 1

0

I
n

nIdndm; Pr ¼
Z 1

0

I
n

n� nIdndm: ð8Þ
The above non-dimensionalization admits the equation of state p ¼ qTðRT1=a2
1Þ. If one assumes physically relevant refer-

ence quantities (e.g. gas constant R = 8.31 � 107 erg K�1, T1 � 10 K, and a1 � 3 � 104 cm s�1), then one finds that
C � 105; RT1=a2

1 � 1, and p = qT. If one further assumes that q1 � 10�9 g cm�3, then P � 10�10. However, the choice of
these values is arbitrary. These quantities were chosen because they are similar to the physical conditions associated with
well known test problems (e.g. Su–Olson non-equilibrium diffusion as well as subcritical and supercritical radiative shocks).
It is important to distinguish that while C and P set the physical scale for the overall system, P is different from the ratio Pr/p
which can be greater than unity in certain regions of a physical system.

For the above system of equations, one has assumed that scattering is isotropic and coherent in the comoving frame,
emission is defined by local thermodynamic equilibrium (LTE), and that spectral averages for the cross-sections can be em-
ployed (gray approximation). The source terms are given by the modified Mihalas–Klein description [31,33] which improves
upon the original Mihalas–Klein description [38] because it maintains important Oð1=C2Þ terms that ensure the correct
relaxation rate to thermal equilibrium. See Section 4 of Lowrie et al. [33] for a physical description of what these source
terms mean.

Lastly, because the focus of this paper is exploring the dynamical properties associated with resolving a system of stiff
hyperbolic balance laws, one has assumed a gray approximation. Under this assumption and given the algorithmic machin-
ery built in this paper, a mixed frame approach is straightforward to implement. However, this formulation becomes increas-
ingly complicated for problems defined by multigroup physics where spectral averages for the cross-sections cannot be
employed. In this context, a comoving frame approach is attractive.

2.1. System of equations in one spatial dimension

This paper is concerned with formulating the algorithmic ideas for a hybrid Godunov method for radiation hydrodynam-
ical problems and develops the method in only one spatial dimension. However, the technique should generalize to multi-
dimensions and such work will be the subject of a future paper. If on neglects transverse flow, then in one spatial dimension
the equations can be written as:
@U
@t
þ @FðUÞ

@x
¼ SðUÞ; ð9Þ

U ¼

q

m

E

Er

Fr

0BBBBBBB@

1CCCCCCCA; FðUÞ ¼

m
m2

q þ p

ðEþ pÞm
q

CFr

CfEr

0BBBBBBBB@

1CCCCCCCCA
; ð10Þ
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SðUÞ ¼

0
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: ð11Þ
The quasi-linear form of this system of balance laws is:
@U
@t
þ A

@U
@x
¼ SðUÞ; ð12Þ

A ¼

0 1 0 0 0
c�3

2 u2 �ðc� 3Þu ðc� 1Þ 0 0

u c�1
2 u2 � eH� � eH � ðc� 1Þu2 cu 0 0

0 0 0 0 C

0 0 0 Cf 0

0BBBBBBB@

1CCCCCCCA: ð13Þ
Here, u = m/q is velocity and eH ¼ cE
q �

c�1
2 u2 is specific enthalpy. The Jacobian A has eigenvalues: k ¼ u;u� a;�f 1=2C. How-

ever, one must account for how the stiff momentum and energy source terms affect the hyperbolic structure.

2.2. Asymptotics

Before describing the method, it is instructive to consider the properties of Eqs. (9)–(13) in various limits. Following the
asymptotic analysis of Lowrie et al. [33], one considers the hyperbolic-parabolic behavior associated with the above system
of equations. For non-relativistic flows, 1=C ¼ Oð�Þwhere �� 1. Assume that there is a moderate amount of radiation in the
flow and that scattering effects are small where rs=rt ¼ Oð�Þ.

The optical depth L is a useful quantity for classifying the limiting behavior of a system that is driven by radiation
hydrodynamics:
L ¼
Z xmax

xmin

rtdx ¼ rtðxmax � xminÞ: ð14Þ
Optically thin regimes are characterized by L < Oð1Þ, whereas optically thick regimes are characterized by L > Oð1Þ. In opti-
cally thin regimes (free streaming limit), radiation and hydrodynamics decouple such that the resulting dynamics resemble
an advection process. In optically thick regimes (weak/strong equilibrium diffusion limit), radiation and hydrodynamics are
strongly coupled and the resulting dynamics resemble a diffusion process. Given these definitions, one makes the following
assumption L ¼ ‘mat=kt ¼ ‘matrt , where kt is the total mean free path of the photos and ‘mat ¼ Oð1Þ is the material flow length
scale [33].

2.2.1. Free Streaming Limit: ra;rt 	 Oð�Þ
In this regime, the right-hand-side of Eq. (11) is negligible such that Eq. (9) is strictly hyperbolic. Moreover, f ? 1 and the

Jacobian of the quasi-linear conservation law in Eq. (12) has eigenvalues k ¼ u;u� a;�C
@q
@t
þ @

@x
ðmÞ ¼ 0; ð15Þ

@m
@t
þ @

@x
m2

q
þ p

� �
¼ 0; ð16Þ

@E
@t
þ @

@x
ðEþ pÞm

q

� �
¼ 0; ð17Þ

@Er

@t
þ @

@x
ðCFrÞ ¼ 0; ð18Þ

@Fr

@t
þ @

@x
ðCErÞ ¼ 0: ð19Þ
2.2.2. Weak equilibrium diffusion limit: ra;rt 	 Oð1Þ
One obtains this limit by defining ra and rt to be of order unity in Eq. (11), matching terms of like order, and combining

the resulting expressions. From the definition of the equilibrium state, Er ¼ T4 þOð�Þ and Fr ¼ �uðEr þ PrÞ � 1
rt

@Pr
@x . Therefore,

the system is parabolic and resembles a diffusion equation, where f ? 1/3.
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@q
@t
þ @
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@m
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q
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@E


@t
þ @

@x
ðE
 þ p
Þm

q

� �
¼ @2

@x2

PCEr

3ra

� �
; ð22Þ
where:
p
 ¼ pþ PPr ¼ pþ 1
3

PT4; E
 ¼ Eþ PEr ¼ Eþ PT4; e
 ¼ eþ PT4: ð23Þ
If one only considers the left-hand-side of Eqs. (20)–(22), the Jacobian Adiff has eigenvalues k = u, u ± a*, where a* is the total
radiation modified sound speed. a* represents the combined influence of material and radiation (i.e., effects associated with
source terms as well as multiscale wave speeds) and is the propagation speed which characterizes the above reduced
dynamical system. Therefore, this quantity is different than the sound speed associated with just the material components
of radiation hydrodynamics
ða
Þ2 ¼ p
q þ
p
p
e

q

; p
q �
@p


@q
; p
e
 �

@p


@e

: ð24Þ
Additionally, the radiation modifies the material such that [33] (i) if the equation of state is thermally stable, then a and a*
are real-valued quantities, (ii) if the hydrodynamic system without radiation is hyperbolic, then the reduced system is also
hyperbolic, and (iii) for c-law gases, a* P a. If one assumes a c-law gas, then one can evaluate a* according to the following
relationship [40]:
ða
Þ2 ¼ Cp

q
¼ Cðpþ PfErÞ

q
; C ¼

c
c�1þ 20nþ 16n2
� �

1
c�1þ 12n
� �

ð1þ nÞ
; n ¼ Pr

p
; ð25Þ
where C is the Gruneisen coefficient and n admits the following limits [40,33,60]:
n! 0 ) C! c ðno radiationÞ; ð26Þ

n!1 ) C! 4
3
ðpure radiationÞ: ð27Þ
2.2.3. Strong equilibrium diffusion limit: ra;rt 	 Oð1=�Þ
One obtains this limit by defining ra and rt to be much larger than order unity in Eq. (11) and following the steps outlined

for the weak equilibrium diffusion limit. From the definition of the equilibrium state, Er ¼ T4 þOð�Þ and Fr = �u(Er + Pr).
Therefore, the right-hand-side of Eqs. (20)–(22) is negligible such that the system can be considered hyperbolic. The Jacobian
of the quasi-linear conservation law has eigenvalues k = u, u ± a*, where f ? 1/3
@q
@t
þ @

@x
ðmÞ ¼ 0; ð28Þ

@m
@t
þ @

@x
m2

q
þ p


� �
¼ 0; ð29Þ

@E


@t
þ @

@x
ðE
 þ p
Þm

q

� �
¼ 0: ð30Þ
2.2.4. Isothermal limit
Lastly, Lowrie et al. [33] evidenced an additional limit which comprises a large portion of parameter space:

Oð�Þ 6 L 6 Oð1=�Þ. This isothermal limit has some dynamical properties in common with the weak equilibrium diffusion
limit, but its defining characteristic is that the material temperature T(x, t) is constant. Additionally, acoustic waves associ-
ated with this parameter regime propagate according to the isothermal sound speed (a*)2 = p/q. This limiting behavior re-
sults from temperature deviations on the slow material flow scale quickly reaching equilibrium on the fast radiation flow
scale [33]. This paper will later show how the hybrid Godunov method reproduces this isothermal limit.

3. Overview of algorithm and the Nike code

In radiation hydrodynamics, there are three important dynamical scales: the speed of sound (material flow), speed of light
(radiation flow), and speed at which the source terms interact. When the matter-radiation coupling is weak (free streaming
limit), the source terms define the slowest scale and the speed of light defines the fastest scale. However, when the matter-
radiation coupling is strong (equilibrium diffusion limit), the speed of sound defines the slowest scale and the source terms
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as well as the speed of light define the fastest scale. Therefore, one must contend with stiffness arising from some waves
propagating at the speed of light as well as source terms that can have large magnitudes.

From a mathematical perspective, radiation hydrodynamics can be thought of as a system of hyperbolic balance laws with
the following dual multiscale behavior: (i) multiscale behavior associated with the hyperbolic wave speeds, such that c/
a1 	 106, which causes breakdowns in monotonicity and (ii) multiscale behavior associated with source term relaxation,
such that S/a1 	 [0,106], which causes breakdowns in stability. Despite these dual behaviors being different, they both
are sources of stiffness that influence the temporal resolution of the problem. Rigorous definitions for monotonicity and sta-
bility are presented in Matus and Lemeshevsky [36]. Given these variations, one desires a numerical technique that treats the
material flow (slowest hyperbolic scale) explicitly, radiation flow (fastest hyperbolic scale) implicitly, and source terms (slow
and fast relaxation terms) semi-implicitly.

The hybrid Godunov method was chosen over two other algorithmic ideas (fully implicit methods and PNPM schemes)
because of the method’s reliance on familiar notions from Godunov-type techniques, ability to be easily implemented with
minimal computational overhead, and accuracy across a wide range of physical behavior. One could have built a fully im-
plicit method that advanced time according to the material flow scale, thereby circumventing any stiffness related to some
hyperbolic waves propagating at the speed of light as well as matter-radiation coupling terms. Such an approach was not
pursued because these methods often have difficulties associated with conditioning, invoke root finding techniques when
nonlinearities are present, are computationally expensive because of matrix inversion, are usually built into central differ-
ence schemes rather than higher-order Godunov methods, and have trouble sharply resolving discontinuous solutions asso-
ciated with advection and shock phenomena. PNPM schemes are a new family of arbitrary higher-order accurate numerical
methods for hyperbolic conservation laws. The N designates the degree of the polynomials used for test functions in a quasi-
WENO (Weighted Essentially Non-Oscillatory) technique to spatially reconstruct cell-centered quantities [11,12]. This
WENO-like reconstruction is found in ADER (Advection–Diffusion–Reaction) schemes [12,55]. The M designates the degree
of the polynomials used for flux and source term computation in a local space–time DG (discontinuous Galerkin) finite ele-
ment procedure for temporal evolution [11,12]. A general feature of the PNPM family of schemes is that they contain classical
higher-order finite volume methods (N = 0) as well as DG methods (M = N). Due to the inherent stiffness of radiation hydro-
dynamical problems, some authors have suggested abandoning classical Godunov methods in favor of DG techniques
[31,32]. However, such methods would be computationally more expensive than the hybrid Godunov method discussed here
and more difficult to implement in existing codes. Additionally, PNPM schemes would not be able to contend with stiffness
arising from some waves propagating at the speed of light and some modification is required. Nevertheless, PNPM schemes
have been successfully applied to problems in resistive relativistic MHD [13] and could be applicable to other characteris-
tically stiff problems.
3.1. Effective CFL condition

Resolving the evolution of material quantities is the primary interest when solving problems in radiation hydrodynamics.
The hybrid method computes (q,m,E) to second-order accuracy as the entire algorithm is advanced according to an effective
CFL condition:
Dt ¼ mDx
maxiðjuij þ aeff;iÞ

; ð31Þ
where Dt is the time step, m 2 [0,1] is the CFL number, Dx = (xmax � xmin)/Ncell is the grid spacing or spatial resolution for a
given number of computational grid cells Ncell, and maxi(juij + aeff,i) is the maximum material wave speed over all grid cells.
Furthermore, aeff is an estimate of the radiation modified sound speed that is obtained by carrying out an effective eigen-
analysis of the material Jacobian. This analysis is presented in a later section.
3.2. Algorithmic steps

After defining Dt, the algorithm loops over the following steps:

1. Backward Euler Upwinding Scheme – implicitly advances the radiation quantities from time tn to time tn+1:
ðEn

r ; F
n
r Þ ! ðE

nþ1
r ; Fnþ1

r Þ and handles breakdowns in monotonicity related to the multiscale hyperbolic wave speeds.
2. Modified Godunov Predictor Scheme – couples stiff source term effects to the hyperbolic structure of the balance laws for

the material quantities and uses effective piecewise linear extrapolation to spatially reconstruct material quantities at the
left/right sides of cell interfaces i� 1=2 : Um;nþ1=2

L=R;iþ1=2.
3. Flux Function – evaluates the passage of material across cell interfaces using left/right material states Um;nþ1=2

L=R;iþ1=2 and an
approximate Riemann solver.

4. Modified Godunov Corrector Scheme – semi-implicitly advances the material quantities from time tn to time tn+1:
(qn,mn,En) ? (qn+1,mn+1,En+1) and handles breakdowns in stability related to multiscale source term relaxation.

5. Apply boundary conditions.
6. Compute next time step Dt.
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In the above expressions, U represents all of the conserved quantities, Ur represents the conserved radiation quantities (Er,Fr),
and Um represents the conserved material quantities (q,m,E). i represents the location of a cell center, i ± 1/2 represents the
location of a cell interface to the right/left of i, and n represents the time discretization. Details about each step are explained
in later sections.
3.3. Numerical properties

When solving a system of hyperbolic balance laws with stiff source terms, there are six properties that a method must
satisfy in order to produce confident numerical solutions. The first three properties pertain to solving hyperbolic conserva-
tion laws and are: consistency (truncation error TD ? 0 as Dt,Dx ? 0), stability (numerical solution remains bounded even
in the limit of n ?1 and Dt ? 0, where time tn = nDt is finite), and accuracy (solution to a finite difference equation wD

converges to the true solution w at some rate as Dt,Dx ? 0). These properties are guaranteed because the hybrid method
is based on the classical Godunov scheme [12,27,41,57].

If there are source terms, stiffness, and multiple scales associated with the system of equations, then a method must also
be: coarsely gridded (grid size does not need to resolve small scale features attributed to the source terms, therefore Dt, Dx
are based on the associated homogeneous hyperbolic conservation law), well-balanced (method preserves steady states),
and asymptotic preserving (method gives the correct asymptotic behavior during the relaxation of the system by the stiff
source terms) [12]. The first property is satisfied because the radiation quantities are implicitly advanced and the material
quantities are semi-implicitly advanced according to a time step Dt which is defined by a conventional CFL condition that is
governed by the material flow scale. The second property pertains to problems where there is a balance between flux and
source terms and the system exhibits no temporal change. This property is satisfied in the modified Godunov corrector
scheme when the error estimate �(Dt) = 0, such that 1

2 ðS
mðbU ;Ur;nþ1Þ þ SmðUm;n;Ur;nþ1ÞÞ ¼ r � Fm;nþ1=2. Lastly, Miniati and Col-

ella [41] showed their modified Godunov method to be asymptotic preserving by looking at the truncation error for a general
system of stiff balance laws and examining the behavior of the eigenvalues keff for the effective Jacobian Aeff. The last prop-
erty is satisfied by aeff obtaining the correct asymptotic behavior as one changes the parameters fC;P;ra;rtg. This effect is
examined in a later section.
4. Backward Euler upwinding scheme

This section presents the implicit scheme that advances the radiation quantities (Er,Fr) according to the material flow
scale. The stability of explicit schemes (e.g. Godunov-type methods) is governed by the CFL condition which restricts the
allowable time step according to the fastest characteristic speed. However, if the overall hyperbolic system consists of mul-
tiscale wave speeds, then explicit schemes can become inefficient. Radiation hydrodynamics (characterized by the speed of
light c and material sound speed a1 as well as the speed at which source terms interact) is an example of a system that
exhibits dual multiscale behavior. This section addresses the multiscale behavior associated with the hyperbolic wave
speeds.
4.1. Implicit schemes and TVD conditions

It is well known that numerical difficulties arise when applying implicit schemes to systems of hyperbolic conservation
laws, particularly when discontinuities are present. Moreover, in order to ensure non-oscillatory solutions when using linear
implicit higher-order time integration methods, one must impose time step restrictions because of the total variation dimin-
ishing (TVD) condition [14,18,19]. Following the presentation in [20], the total variation of a mesh function v is defined by
the following equation:
TVðvÞ ¼
X1

i¼�1
jv iþ1 � v ij; ð32Þ
where the computational grid is indexed by i. One uses this relation to refer to a numerical scheme ðvnþ1 ¼ S � vnÞ as being
TVD, if TV(vn+1) 6 TV(vn) where vn denotes an approximation to the true solution at time tn. This idea is important to numer-
ical methods because Harten [19] proved that: (i) a monotone scheme is TVD and (ii) a TVD scheme is monotonicity preserv-
ing. In this context, a numerical method is monotonicity preserving if (i) no new local extrema are created within the spatial
domain of the numerical solution and (ii) the value of a local minimum is non-decreasing which is to say, the value of a local
maximum is non-increasing.

From a TVD perspective, Duraisamy and Baeder presents ratios of the maximum allowable time step for a few implicit
schemes with respect to the maximum allowable time step for the explicit forward Euler scheme. From these ratios, one sees
that linear implicit higher-order schemes are impractical when solving flow fields with discontinuities such that
ðDtÞHO

imp=ðDtÞexp 	 Oð1Þ. Only the implicit backward Euler method allows for ðDtÞBE
imp=ðDtÞexp !1 [14]. This condition is impor-

tant when numerically solving radiation hydrodynamical problems because the backward Euler scheme, which is uncondi-
tionally TVD stable, can handle the high degree of stiffness associated with the following time scales:
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ðDtÞBE
imp

ðDtÞexp
>
ðDtÞmat

ðDtÞrad
� c

a1
� 106: ð33Þ
Furthermore, the above statement is consistent with the Godunov order barrier theorem, which states: linear numerical
schemes for solving partial differential equations that have the property of not generating new extrema (i.e., a monotone
scheme) can be at most first-order accurate [17].

4.2. Linearity and choice of algorithm

If one thinks about these numerical difficulties from a physical perspective, then one can intuitively understand why im-
plicit higher-order schemes are not viable approaches for a coupled hyperbolic system where some waves move at the speed
of sound and other waves move at the speed of light. Clearly, there are going to be issues with higher-order schemes that do
not enforce limiting conditions because the fast waves will have traversed a large distance in the computational domain,
altered the reconstruction, and caused significant oscillations. Therefore, one needs to ensure monotonicity in a higher-order
implicit scheme that attempts to solve a stiff problem. However, higher-order implicit updates for the radiation quantities
are unlikely because in order to preserve monotonicity one must invoke TVD limiting or artificial viscosity conditions. When
applying limiting techniques to the implicitly defined linear radiation subsystem, one forces the subsystem to be highly non-
linear. This approach makes the problem difficult to solve, especially in multiple spatial dimensions where convergence is
not guaranteed. When using artificial viscosity, one adds a competing parabolic/diffusion process. This is a dangerous ap-
proach and will likely give the incorrect solution in certain parameter regimes because radiation hydrodynamics already
exhibits parabolic relaxation. Therefore, one is forced to use the first-order backward Euler technique. Yet, one way to obtain
better resolution while maintaining monotonicity is to use adaptive mesh refinement (AMR). Such a technique would be
invaluable for accurately depicting discontinuous radiative phenomena and is an future area of algorithmic research.

Since backward Euler-type schemes naturally handle stiff problems and since a primary goal of this work is to resolve the
material components of radiation hydrodynamics, a backward Euler-type scheme provides the suitable framework for defin-
ing the implicit update step. The backward Euler framework can be cast in the following form:
Unþ1 ¼ Un þ DtLðUnþ1Þ ð34Þ
where L is a linear operator that defines spatial differences and numerical fluxes. The linearity of this operator is important
because the radiation subsystem has no nonlinearities with respect to Er or Fr. Nonlinearities only arise in the material quan-
tities (q,m,E) which are held at time tn. Lastly, Duraisamy & Baeder 2007 describe how to approximate the flux integral at cell
interfaces which takes the form:
Fiþ1=2 ¼
1
Dt

Z tnþ1

tn

F Uðxiþ1=2; tÞ
� 	

dt; ð35Þ
such that one constructs an implicit flux function. With this idea in mind, an HLLE framework was chosen for this algorithm
because the HLLE flux function is a simple approximate Riemann solver with numerical properties that guarantee conserva-
tion and good behavior for isolated discontinuities as well as smooth solutions. Choosing to implicitly advance the radiation
quantities following the backward Euler HLLE scheme ultimately splits the radiation and material components even though
the modified Godunov scheme that semi-implicitly advances the material quantities fully maintains the coupling between
the material components and source terms. However, this procedural choice does not decrease the accuracy or stability of
the respective schemes. Moreover, the sum of the total energy (E + Er) across all space x is conserved over time. These results
are evidenced in the numerical tests presented later in Sections 8–10.

4.3. HLLE framework

The HLLE scheme is based on estimating the minimum and maximum wave speeds (smin,smax) that arise in the Riemann
problem: Uiþ1=2 ¼ RðUL;iþ1=2;UR;iþ1=2Þ. The numerical flux is calculated from:
FHLLE
iþ1=2ðRðUL;URÞÞ ¼

1
2
ðF L þ F RÞ þ

1
2

smax þ smin

smax � smin

� �
ðF L � F RÞ; ð36Þ

F L ¼ FðULÞ � sminUL; F R ¼ FðURÞ � smaxUR; ð37Þ
By combining these relations, one arrives at:
FHLLE
iþ1=2ðRðUL;URÞÞ ¼

1
2
ð1þ CsÞ FðULÞ � sminULð Þ þ ð1� CsÞ FðURÞ � smaxURð Þ
� 	

: ð38Þ
where Cs = (smax + smin)/(smax � smin). Inserting Cs into Eq. (38) results in the more familiar relation:
FHLLE
iþ1=2ðRðUL;URÞÞ ¼

smaxFðULÞ � sminFðURÞ þ sminsmaxðUR � ULÞ
smax � smin

: ð39Þ
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However, Eq. (38) is the form used by the algorithm’s backward Euler update step. Defining the left/right states of the Rie-
mann problem according to a first-order accurate (piecewise constant) reconstruction, forces the HLLE flux function to
become:
FHLLE
iþ1=2ðRðUL;URÞÞ ¼ FHLLE

iþ1=2ðRðUi;Uiþ1ÞÞ; ð40Þ
such that the exact integral formulation of the conservative differencing is:
Unþ1
i ¼ Un

i �
Dt
Dx

Fiþ1=2ðRðUi;Uiþ1ÞÞ � Fi�1=2ðRðUi�1;UiÞÞ
� 	

þ DtSðUn
i Þ: ð41Þ
The choice of using a first-order accurate (piecewise constant) reconstruction was made to simplify the calculation and be-
cause higher order accuracy is not required since backward Euler-type schemes are already first-order accurate. One makes
the above explicit HLLE scheme implicit by defining the variables in the flux and source terms to be at time tn+1:
Unþ1
i ¼ Un

i �
Dt
Dx

FHLLE
iþ1=2ðRðU

nþ1
i ;Unþ1

iþ1 ÞÞ � FHLLE
i�1=2ðRðU

nþ1
i�1 ;U

nþ1
i ÞÞ

� �
þ DtSðUnþ1

i Þ; ð42Þ

FHLLE
iþ1=2 ¼

1
2

1þ Cs
iþ1=2

� �
FðUnþ1

i Þ � sminUnþ1
i

� �
þ 1� Cs

iþ1=2

� �
FðUnþ1

iþ1 Þ � smaxUnþ1
iþ1

� �� �
: ð43Þ
4.4. Applying the backward Euler HLLE scheme

Consider only the radiation part of the equations for radiation hydrodynamics (i.e., Eqs. (5) and (6)) [49]. This simpler sys-
tem is termed the radiation subsystem and the variables, fluxes, and source terms are:
Ur ¼
Er

Fr

� �
; FrðUÞ ¼

CFr

CfEr

� �
; ð44Þ

SrðUÞ ¼ CSE

CSF

 !
¼

C raðT4 � ErÞ þ ðra � rsÞ m
qC

Fr � ð1þf ÞmEr
qC

� �h i
C �rt Fr � ð1þf ÞmEr

qC

� �
þ ra

m
qC
ðT4 � ErÞ

h i
0B@

1CA; ð45Þ
where the eigenvalues of the radiation subsystem in the free streaming limit ðra;rt 	 Oð�ÞÞ are k� ¼ �f 1=2C. Given that the
HLLE scheme uses minimum and maximum wave speeds to compute fluxes at cell interfaces i + 1/2, one defines the follow-
ing equations:
smin ¼ k�L;i ¼ �f 1=2
i C; smax ¼ kþR;iþ1 ¼ f 1=2

iþ1 C; Cs
iþ1=2 ¼

f 1=2
iþ1 � f 1=2

i

f 1=2
iþ1 þ f 1=2

i

; ð46Þ
where f arises from the closure relation Pr = f Er and is either a user defined quantity or obtained by solving the radiation
transport equation. If f varies spatially, then Cs

iþ1=2 is non-zero. Defining or computing f(x, t) precedes the backward Euler up-
date of Ur. For all of the numerical tests presented in this paper, f is assumed to be spatially and temporally constant, thereby
setting Cs

iþ1=2 ¼ 0. Future work will update f(x, t) at each iteration by solving the radiation transport equation.

4.5. Matrix equation for the radiation components

Inputting Ur,n+1, Fr(Ur,n+1), and Sr(Um,n,Ur,n+1) into Eqs. (42) and (43) gives the following difference equations:
Enþ1
r;i�1 �d1 1þ Cs

i�1=2

� �
f 1=2
i�1

h i
þ Fnþ1

r;i�1 �d1 1þ Cs
i�1=2

� �h i
þ Enþ1

r;i 1þ d1 1þ Cs
iþ1=2

� �
f 1=2
i þ d1 1� Cs

i�1=2

� �
f 1=2
i þ d2ra þ

d2 ra � rsð Þ 1þ fið Þ mn
i

� 	2

qn
i

� 	2
C2

" #

þ Fnþ1
r;i d1 1þ Cs

iþ1=2

� �
� d1 1� Cs

i�1=2

� �
� d2 ra � rsð Þmn

i

qn
i C

� �
þ Enþ1

r;iþ1 �d1 1� Cs
iþ1=2

� �
f 1=2
iþ1

h i
þ Fnþ1

r;iþ1 d1 1� Cs
iþ1=2

� �h i
¼ En

r;i þ d2ra Tn
i

� 	4
; ð47Þ

Enþ1
r;i�1 �d1 1þ Cs

i�1=2

� �
fi�1

h i
þ Fnþ1

r;i�1 �d1 1þ Cs
i�1=2

� �
f 1=2
i�1

h i
þ Enþ1

r;i d1 1þ Cs
iþ1=2

� �
fi � d1 1� Cs

i�1=2

� �
fi �

d2rt 1þ fið Þmn
i

qn
i C

þ d2ramn
i

qn
i C

� �
þ Fnþ1

r;i 1þ d1 1þ Cs
iþ1=2

� �
f 1=2
i þ d1 1� Cs

i�1=2

� �
f 1=2
i þ d2rt

h i
þ Enþ1

r;iþ1 d1 1� Cs
iþ1=2

� �
fiþ1

h i
þ Fnþ1

r;iþ1 �d1 1� Cs
iþ1=2

� �
f 1=2
iþ1

h i
¼ Fn

r;i þ
d2ra Tn

i

� 	4mn
i

qn
i C

; ð48Þ
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where d1 ¼ DtC=2Dx; d2 ¼ DtC, and Tn
i ¼ pn

i =qn
i ¼ ðc� 1Þ En

i
qn

i
� 1

2
ðmn

i
Þ2

ðqn
i
Þ2

� �
. If one attributes variables h and / to the bracketed

quantities in the above relations, then the difference equations can be written as:
h1Enþ1
r;i�1 þ h2Fnþ1

r;i�1 þ h3Enþ1
r;i þ h4Fnþ1

r;i þ h5Enþ1
r;iþ1 þ h6Fnþ1

r;iþ1 ¼ En
r;i þ h7; ð49Þ

/1Enþ1
r;i�1 þ /2Fnþ1

r;i�1 þ /3Enþ1
r;i þ /4Fnþ1

r;i þ /5Enþ1
r;iþ1 þ /6Fnþ1

r;iþ1 ¼ Fn
r;i þ /7: ð50Þ
Since there are no nonlinearities in the radiation quantities for which root finding (e.g. Newton’s method) must be imple-
mented, one casts these equations into a sparse matrix format that can be solved exactly with basic linear algebra techniques
(i.e., Gaussian elimination and back substitution). The formulation Ax = b has dimensions dim (A) = 2N � 2N, where elements
{Er,1,Fr,1,Er,N,Fr,N} account for the boundary conditions. Efficient matrix operations can be performed across the relevant radi-
ation hydrodynamical parameter space because the matrix A is diagonally dominant. Four types of boundary conditions
(periodic, outflow, reflecting, and inflow) were applied to the numerical tests presented in this paper. The ways in which
these boundary conditions modify the matrix equations are shown in Appendix A.

It is important to note that the backward Euler upwinding scheme naturally accounts for radiation dominated problems
(Pr > p or Er > T4). As was discussed earlier and will be shown in the following section, the modified Godunov method pre-
serves the isothermal limit. When Pr increases with respect to p, material effects as well as updates from the modified Godu-
nov scheme become less important. For such physical phenomena, the backward Euler upwinding scheme becomes the
dominant numerical method in the overall algorithm. If one examines Eqs. (2)–(6) as well as Eqs. (44) and (45), then one
notices that P is only associated with the source terms of the material components. To this end, radiation dominated systems
are naturally handled by the backward Euler upwinding scheme and is evidenced in the numerical tests presented in this
paper.

5. Modified Godunov predictor scheme

Given that the radiation quantities (Er,Fr) are at time tn+1, one computes the flux divergence (r� Fm)n+1/2 for the material
quantities (q,m,E) that are at time tn. Following the analysis of Trebotich et al. [57], Miniati and Colella [41], and Sekora and
Stone [49], one applies Duhamel’s principle to the quasi-linear system of balance laws in Eqs. (12) and (13) for only the mate-
rial components. This technique defines the following system that locally includes in space–time the effects of the stiff
source terms on the hyperbolic structure:
DUm
eff

Dt
¼ IðgÞ �Am

L
@Um

@x
þ SmðUm;n;Ur;nþ1Þ

� �
; ð51Þ
where DUm

Dt ¼ @Um

@t þ u @Um

@x is the total derivative, I is a propagation operator that projects the dynamics of the stiff source terms
onto the hyperbolic structure, and Am

L ¼ Am � uI is the Jacobian for a Lagrangian trajectory with I being the identity matrix.
Since the predictor scheme is a first-order accurate step in a second-order accurate predictor–corrector method, one chooses
g = Dt/2 and the effective balance law becomes:
@Um

@t
þ Am

eff
@Um

@x
¼ IðDt=2ÞSmðUm;n;Ur;nþ1Þ; ð52Þ
where Am
eff ¼ IðDt=2ÞAm

L þ uI. In order to compute I , one first computes rUm SmðUÞ.

5.1. Applying the modified Godunov predictor scheme

If one only considers the material component in Eqs. (9)–(11), then the variables, fluxes, and source terms are:
Um ¼
q
m

E

0B@
1CA; FmðUÞ ¼

m
m2

q þ p

ðEþ pÞm
q

0B@
1CA; ð53Þ

SmðUÞ ¼
0
�PSF

�PCSE

0B@
1CA ¼

0
�P �rt Fr � ð1þf ÞmEr

qC

� �
þ ra

m
qC
ðT4 � ErÞ

h i
�PC raðT4 � ErÞ þ ðra � rsÞ m

qC
Fr � ð1þf ÞmEr

qC

� �h i
0BB@

1CCA: ð54Þ
Therefore:
rUm SmðUÞ ¼
0 0 0
�PSF

q �PSF
m �PSF

E

�PCSE
q �PCSE

m �PCSE
E

0B@
1CA; ð55Þ
where the partial derivatives are:
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SF
q ¼
�rtð1þ f ÞmEr

q2C
� ramðT4 � ErÞ

q2C
þ 4ramT3

qC
ðc� 1Þ �E

q2 þ
m2

q3

� �
; ð56Þ

SF
m ¼

rtð1þ f ÞEr

qC
þ raðT4 � ErÞ

qC
þ 4ramT3

qC
ðc� 1Þ �m

q2

� �
; ð57Þ

SF
E ¼

4ramT3

qC
ðc� 1Þ 1

q

� �
; ð58Þ

SE
q ¼ 4raT3ðc� 1Þ �E

q2 þ
m2

q3

� �
�m ra � rsð ÞFr

q2C
þ 2ðra � rsÞð1þ f Þm2Er

q3C2 ; ð59Þ

SE
m ¼ 4raT3ðc� 1Þ �m

q2

� �
þ ðra � rsÞFr

qC
� 2ðra � rsÞð1þ f ÞmEr

q2C2 ; ð60Þ

SE
E ¼ 4raT3ðc� 1Þ 1

q

� �
: ð61Þ
5.1.1. Simplifying rUm SmðUÞ
In its current form,rUm SmðUÞ in Eq. (55) leads to a propagation operator I that is difficult to work with algebraically. One

should focus on the fact that the material momentum source term �PSF is not the dominant factor defining the stiffness
associated with the matter-radiation coupling. By inspection, �PSF < Oð1Þ even in the strong equilibrium diffusion limit,
where the contributing terms have the following magnitudes P 	 Oð1=CÞ; ra;s;t 	 OðCÞ; Fr < Oð1Þ; ð1þ f ÞmEr=qC

< Oð1Þ; m=qC 	 Oð1=CÞ, and ðT4 � ErÞ < Oð1Þ. Additionally, one finds that the derivative of the material momentum source
term with respect to the conserved variables has the following magnitude�PSF

fq;m;Eg < Oð1Þ. Therefore, �PSF can be included
like a body force (i.e., gravity).

It is the material energy source term �PCSE that defines the stiffness associated with the problem. By inspection of the
contributing terms, �PCSE < OðCÞ in the strong equilibrium diffusion limit. Additionally, one finds that the derivative of the
material energy source term with respect to the conserved variables has the following magnitude �PCSE

fq;m;Eg < OðC
2Þ.

Therefore, one only needs to use �PCSE to define rUm SmðUÞ, such that:
rUm SmðUÞ ¼
0 0 0
0 0 0

�PCSE
q �PCSE

m �PCSE
E

0B@
1CA: ð62Þ
rUm SmðUÞ is further simplified by examining SE
fq;m;Eg in the equilibrium diffusion limit and neglecting terms that have mag-

nitudes of or less than OðCÞ. Therefore:
SE
q ! 4raT3ðc� 1Þ �E

q2 þ
m2

q3

� �
; ð63Þ

SE
m ! 4raT3ðc� 1Þ �m

q2

� �
; ð64Þ

SE
E ! 4raT3ðc� 1Þ 1

q

� �
: ð65Þ
It is important to note that these partial derivatives have the same stiff magnitude 4raT3(c � 1). This insight simplifies alge-
braic manipulation.

If rUm SmðUÞ is diagonalizable, then rUm SmðUÞ ¼ RDR�1. Here, D ¼ diagð0;0;�PCSE
EÞ and R is a matrix whose columns are

the right eigenvectors. Below, one sees how the stiff magnitudes cancel out:
R ¼

�SE
E

SE
q

�SE
m

SE
q

0

0 1 0
1 0 1

0BB@
1CCA; R�1 ¼

�SE
q

SE
E

�SE
m

SE
E

0

0 1 0
SE
q

SE
E

SE
m

SE
E

1

0BBB@
1CCCA: ð66Þ
5.1.2. Propagation operator I
The propagation operator I is defined in Miniati and Colella [41]. Since one is considering a modified Godunov scheme

with a predictor step of Dt/2:
I Dt
2

� �
¼ 1

Dt=2

Z Dt=2

0
esrUm SmðUÞds ð67Þ

¼

1 0 0
0 1 0

ða� 1Þ SE
q

SE
E
ða� 1Þ SE

m

SE
E

a

0BB@
1CCA ð68Þ
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¼
1 0 0
0 1 0

ð1� aÞ E
q� m2

q2

� �
ð1� aÞm

q a

0B@
1CA; ð69Þ
where a ¼ ð1� expð�PCSE
EDt=2ÞÞ=ðPCSE

EDt=2Þ. Since SE
E P 0 across all relevant parameter space, 0 6 a 6 1. This property is

important when considering stability and the subcharacteristic condition which is discussed later in the paper.
5.2. Effective material Jacobian Am
eff

Before applying I to Am
L , it is useful to understand that moving-mesh methods can be accommodated in non-relativistic

descriptions of radiation hydrodynamics whenever an Eulerian frame treatment is employed. These methods do not require
transformation to the comoving frame [31]. Since the non-dimensionalization is associated with the hydrodynamical scale,
one can use umesh = u from Lagrangian hydrodynamical methods.

The effects of the stiff source terms on the hyperbolic structure are accounted for by transforming to a moving-mesh
(Lagrangian) frame Am

L ¼ Am � uI, applying the propagation operator I to Am
L , and transforming back to an Eulerian frame

gives the effective material Jacobian Am
eff ¼ IAm

L þ uI [41]:
Am
eff ¼

0 1 0
c�3

2 u2 �ðc� 3Þu ðc� 1Þ

u c�1
2 u2 � aeH � ð1� aÞ T

c�1þ 1
2 u2

� �� �
�ðc� 1Þu2 þ aeH þ ð1� aÞ T

c�1þ 1
2 u2

� �
cu

0BB@
1CCA; ð70Þ
which has eigenvalues km
eff ;f�;0;þg ¼ u� aeff ;u;uþ aeff . Here, the effective sound speed aeff (i.e., the radiation modified sound

speed) is:
a2
eff ¼ �

c� 1
2

u2 þ aðc� 1ÞeH þ ð1� aÞ T þ c� 1
2

u2
� �

ð71Þ

¼ a
cp
q
þ ð1� aÞT ð72Þ

¼ aðc� 1Þ þ 1ð Þ p
q
; ð73Þ
where T = p/q because of the non-dimensionalization in Section 2 admitting the equation of state p ¼ qTðRT1=a2
1Þ. Here, one

notices that eH; ðT þ ðc� 1Þu2=2ÞP 0 across all relevant parameter space such that the effective sound speed aeff admits the
following limits:
� PCSE
E ! 0) a! 1 ) a2

eff ! �
c� 1

2
u2 þ ðc� 1ÞeH ¼ cp

q
ðadiabaticÞ ð74Þ

� PCSE
E ! �1) a! 0 ) a2

eff ! T ¼ p
q
ðisothermalÞ: ð75Þ
When examining Eqs. (74) and (75), one sees that the subcharacteristic condition for material wave speeds is satisfied, such
that [41]:
km
� ¼ u� aad 6 km

eff;� ¼ u� aeff 6 km
0 ¼ km

eff;0 ¼ u 6 km
eff;þ ¼ uþ aeff 6 km

� ¼ uþ aad: ð76Þ
This condition is necessary for the stability of the system and guarantees that the numerical solution tends to the solution of
the equilibrium equation as the relaxation time tends to zero. Additionally, the structure of the equations remains consistent
with respect to classical Godunov methods. Therefore, the CFL condition maxðjkm

eff ;
jÞ Dt
Dx 6 1 applies, where 
 = {�,0,+}.

It is important to note that aeff is different from a* which was defined earlier as the propagation speed associated with a
reduced dynamical system that captures the combined influence of material and radiation (i.e., effects associated with
source terms as well as multiscale wave speeds). aeff defines the effective material sound speed that estimates the influence
of the source terms on the hyperbolic structure of the split material subsystem. Although the modified Godunov method is
an unsplit finite volume technique that directly couples advection-reaction processes, there is an obvious splitting between
the material (modified Godunov scheme) and radiation (backward Euler upwinding scheme) because of the multiscale nat-
ure of the hyperbolic wave speeds. aeff is designed to handle the former piece of this splitting. In the dispersion analysis of
Lowrie et al. [33], a* is plotted for various parameters. As the optical depth is increased, a* takes values equal to the adiabatic
sound speed and then values equal to the isothermal sound speed. At very large optical depths, a* takes values exceeding the
isothermal sound speed. Because aeff is only defined for the split material subsystem, not the global radiation hydrodynam-
ical system, aeff should only take values ranging between the adiabatic and isothermal sound speeds which is what is seen in
Eqs. (74) and (75). In situations where large optical depths are involved, radiation is the dominant species governing the
dynamical behavior and is evolved using the backward Euler upwinding scheme for the split radiation subsystem.
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Lastly, the right material eigenvectors Rm
eff (stored as columns) and left material eigenvectors Lm

eff (stored as rows) are
shown below. Clearly, there are many structural similarities between the effective eigen-quantities Am

eff ; km
eff ; Rm

eff , and Lm
eff

and those from adiabatic/isothermal hydrodynamics
Rm
eff ¼

1 1 1
u� aeff u uþ aeff

u2

2 � uaeff þ
a2

eff
c�1

u2

2
u2

2 þ uaeff þ
a2

eff
c�1

0BB@
1CCA; ð77Þ

Lm
eff ¼

u
2aeff

1þ ðc�1Þu
2aeff

� �
�1

2aeff
1þ ðc�1Þu

aeff

� �
ðc�1Þ
2a2

eff

1� ðc�1Þu2

2a2
eff

ðc�1Þu
a2

eff

�ðc�1Þ
a2

eff

�u
2aeff

1� ðc�1Þu
2aeff

� �
1

2aeff
1� ðc�1Þu

aeff

� �
ðc�1Þ
2a2

eff

0BBBBB@

1CCCCCA: ð78Þ
5.3. Computing left/right states

In the modified Godunov predictor scheme one uses effective piecewise linear extrapolation to spatially reconstruct
material quantities at the left/right sides of cell interfaces. This technique is given by the following relations:
Um;nþ1=2
L;iþ1=2 ¼ Um;n

i þ 1
2

I � Dt
Dx

Am
effðU

m;n
i Þ

� �
PDðDUm;n

i Þ þ
Dt
2
I Dt

2

� �
SmðUm;n

i ;Ur;nþ1
i Þ; ð79Þ

Um;nþ1=2
R;iþ1=2 ¼ Um;n

iþ1 �
1
2

I þ Dt
Dx

Am
effðU

m;n
iþ1Þ

� �
PDðDUm;n

iþ1Þ þ
Dt
2
I Dt

2

� �
SmðUm;n

iþ1 ;U
r;nþ1
iþ1 Þ; ð80Þ
where I is the identity matrix, Am
eff is the effective material Jacobian, PD is a slope limiting function used to eliminate spurious

oscillations, I is the propagation operator, and Sm is the vector of source terms influencing the material equations. Slope lim-
iting is performed for each of the material quantities. Although any traditional slope limiter can be used, the Nike code em-
ploys the extremum-preserving [8,48] as well as the traditional van Leer limiter (also referred to as the MUSCL limiter).
These techniques can be implemented either componentwise or across characteristic fields and are illustrated in Appendix
B.

After reconstructing the material quantities, an approximate Riemann solver evaluates the passage of material across
each cell interface using left/right states Um;nþ1=2

L=R;iþ1=2 [47]. The Nike code employs three such flux functions (Lax–Friedrichs,
Lax–Wendroff, and HLLE), which are presented in Appendix C. It is important to emphasize that these flux functions do
not directly account for the influence of radiation on the material quantities. Rather, the radiation effects are included via
the source terms, propagation operator, and effective material Jacobian.
6. Modified Godunov corrector scheme

The time discretization for the source term is a single-step, second-order accurate scheme based on the ideas from Dutt et
al. [15], Minion [42], and Miniati and Colella [41]. Given the material system of balance laws, one aims for a scheme that has
an explicit approach for the flux divergence term r � Fm and an implicit approach for the stiff source term Sm(U).

At each grid point, one solves the following collection of ordinary differential equations:
dUm

dt
¼ SmðUÞ � ðr � FmÞnþ1=2

; ð81Þ
where the time-centered flux divergence term is inputted from the predictor step and taken to be constant valued. Using
Picard iteration and the method of deferred corrections, an initial guess for the solution to the collection of ordinary differ-
ential equations is:
bU ¼ Um;n þ DtðI � DtrUm SmðUÞjUm;n ;Ur;nþ1 Þ�1ðSmðUm;n;Ur;nþ1Þ � ðr � FmÞnþ1=2Þ; ð82Þ
where rUm SmðUÞ has the same functional form as that which was used to define the propagation operator I in a previous
section. Therefore:
I � DtrUm SmðUÞ
� 	

¼
1 0 0
0 1 0

DtPCSE
q DtPCSE

m 1þ DtPCSE
E

0B@
1CA: ð83Þ
By inverting the above matrix, one finds:
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I � DtrUm SðUÞð Þ�1 ¼

1 0 0
0 1 0

�DtPCSE
q

1þDtPCSE
E

�DtPCSE
m

1þDtPCSE
E

1
1þDtPCSE

E

0BB@
1CCA: ð84Þ
The error estimate � is the difference between the solution obtained from one iteration of the Picard technique where bU is
used as the starting value and the initial guess bU:
�ðDtÞ ¼ Um;n þ Dt
2

SmðbU ;Ur;nþ1Þ þ SmðUm;n;Ur;nþ1Þ
� �

� Dtðr � FmÞnþ1=2 � bU : ð85Þ
Following Miniati and Colella [41], the correction to the initial guess is given by:
dðDtÞ ¼ I � DtrUm SmðUÞjbU ;Ur;nþ1

� ��1
�ðDtÞ: ð86Þ
Therefore, the material quantities at time tn+1 are:
Um;nþ1 ¼ bU þ dðDtÞ: ð87Þ
Appendix D explains how to apply various types of boundary conditions in the modified Godunov corrector scheme.
7. Numerical tests of Nike

The hybrid Godunov method was implemented in a new radiation hydrodynamical code called Nike. A suite of ten
numerical tests were conducted to gauge the temporal and spatial accuracy of the hybrid Godunov method. Tests were car-
ried out using the same code with no special adjustments made for any test and span a wide range of mathematical and
physical behavior. These tests are grouped into three categories (hydrodynamics, radiation subsystem, and full radiation
hydrodynamics) which define the dominant physical system. The numerical solution is compared with the analytic solution
where possible. Otherwise, a self-similar comparison is made.

The following definitions for the n-norms and convergence rates are used throughout this paper. Given the numerical
solution qr at resolution r and the analytic solution u, the error at a given point i is �r

i ¼ qr
i � u. Likewise, given the numerical

solution qr at resolution r and the numerical solution qr+1 at the next finer resolution r + 1 (spatially averaged onto the coar-
ser grid), the self-similar error at a given point i is �r

i ¼ qr
i � qrþ1

i . The 1-norm and max-norm are:
L1 ¼
X

i

j�r
i jDxr; Lmax ¼max

i
j�r

i j: ð88Þ
The convergence rate is measured using Richardson extrapolation:
Rn ¼
ln Lnð�rÞ=Lnð�rþ1Þ
� 	
ln Dxr=Dxrþ1ð Þ : ð89Þ
For all of the tests presented in this paper, the material fluxes were computed with a componentwise van Leer limiter and an
HLLE flux function using second-order (piecewise linear) spatial reconstruction. Moreover, c = 5/3 and the CFL number is
m = 0.5. This value for the CFL number was chosen for convenience but any m < 1 is valid.
8. Hydrodynamics

In order to determine how Nike’s modified Godunov scheme resolves purely hydrodynamical phenomena, the following
set of parameters were chosen to force the radiation hydrodynamical system towards the free streaming limit. Therefore,
Eqs. (9)–(11) transform into Eqs. (15)–(17). The following tests examine processes associated with the Euler Equations.

Parameters:
C ¼ 105; P ¼ 10�20; ra; rt ¼ 10�20; f ¼ 1; E0
r ; F0

r ¼ 10�20;

Dt ¼ mDx
maxiðjuij þ aeff ;iÞ

; xmin ¼ 0; xmax ¼ 1; Ncell ¼ ½32;64;128;256:
When conducting purely hydrodynamical tests on the modified Godunov scheme, one expects R = 2.0 for smooth initial data
(e.g. Gaussian pulse) and R ’ 0.67 for discontinuous initial data (e.g. square pulse). This claim is true for all second-order
spatially accurate numerical methods when applied to an advection-type problem (ut + aux = 0) [27]. It is important to pres-
ent these hydrodynamical tests because some radiation hydrodynamical codes perform poorly in this free streaming limit.
The results herein demonstrate the hybrid Godunov method to be robust and applicable across different parameter regimes.
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8.1. Linear advection

For the linear advection tests, the initial values of the conserved quantities are given by:
Uðx;0Þ ¼

q0

m0

E0

E0
r

F0
r

0BBBBBB@

1CCCCCCA ¼
q0

q0u0

1
2 q0ðu0Þ2 þ p0

ðc�1Þ

E0
r

F0
r

0BBBBBBB@

1CCCCCCCA: ð90Þ
Parameters:
IC for Gaussian Pulse :
q0 ¼ 1þ exp �ðvðx� lÞÞ2

� �
; v ¼ 20; l ¼ 0:5;

u0 ¼ 1; p0 ¼ 1; tend ¼ 1 ðone crossing timeÞ;

8<:
IC for Square Pulse :

q0ð0:4 < x < 0:6Þ ¼ 1; q0ðx < 0:4;0:6 < xÞ ¼ 0:1;
u0 ¼ 1; p0 ¼ 1; tend ¼ 1 ðone crossing timeÞ;

(
periodic BC:
As the spatial resolution increases, the numerical solutions in Figs. 1 and 2 converge to Gaussian and square pulses. Further-
more, Tables 1 and 2 show that the convergence rates approach 2.0 and 0.67 for smooth and discontinuous initial data.
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Fig. 1. Gaussian pulse in the free streaming limit (hydro variables). t = 1.
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Fig. 2. Square pulse in the free streaming limit (hydro variables). t = 1.
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8.2. Propagation of linear modes

One of the most discriminating hydrodynamical tests is the propagation of linear modes on a periodic domain. One ini-
tializes eigenfunctions of sound and contact waves in a uniform medium by using the right material eigenvectors Rm

eff and
setting the wavelength of each small amplitude perturbation A equal to the size of the domain (L = xmax � xmin = 1) [52]:
Table 1
Converg
t = 1.

Ncell

32
64
128
256

Table 2
Converg
t = 1.

Ncell

32
64
128
256

Table 3
Converg

Ncell

32
64
128
256

Table 4
Converg

Ncell

32
64
128
256
Uðx;0Þ ¼

q0 þA sinðkxÞRm;ð1;jÞ
eff ðq0;u0;p0Þ

m0 þA sinðkxÞRm;ð2;jÞ
eff ðq0;u0;p0Þ

E0 þA sinðkxÞRm;ð3;jÞ
eff ðq0;u0;p0Þ

E0
r

F0
r

0BBBBBBB@

1CCCCCCCA: ð91Þ
Parameters:
q0 ¼ 1; u0 ¼ 0 ðsound waves : u� aÞ; u0 ¼ 1 ðcontact waves : uÞ; p0 ¼ 1=c;

A ¼ 10�6; k ¼ 2p=L; j ¼ f1;2;3g; tend ¼ 1 ðone crossing timeÞ; periodic BC:
This choice of parameters causes the material sound speed to take the following value a0
eff ¼ 1. As seen in Tables 3 and 5, the

errors associated with the sound waves (u ± a) are identical because the initialization is the same except that the waves
propagate in opposite directions. As evidenced in Tables 3–5, all of the convergence rates approach 2.0.
ence analysis for a Gaussian pulse in the free streaming limit (hydro variables). Errors were determined by comparing the numerical/analytic solutions.

L1(q) R L1(q) R L1(m) R L1(m) R L1(E) R L1(E) R

5.6E�2 – 4.5E�1 – 5.6E�2 – 4.5E�1 – 2.8E�2 – 2.2E�1 –
2.5E�2 1.2 2.7E�1 0.7 2.5E�2 1.2 2.7E�1 0.7 1.2E�2 1.2 1.4E�1 0.7
8.0E�3 1.6 1.2E�1 1.2 8.0E�3 1.6 1.2E�1 1.2 4.0E�3 1.6 5.8E�2 1.3
1.9E�3 2.1 3.8E�2 1.7 1.9E�4 2.1 3.8E�2 1.7 9.6E�4 2.1 1.8E�2 1.7

ence analysis for a square pulse in the free streaming limit (hydro variables). Errors were determined by comparing the numerical/analytic solutions.

L1(q) R L1(m) R L1(E) R

9.6E�2 – 9.6E�2 – 4.8E�2 –
5.2E�2 0.9 5.2E�1 0.9 2.6E�2 0.9
3.1E�3 0.7 3.1E�1 0.7 1.6E�2 0.7
1.9E�3 0.7 1.9E�2 0.7 9.6E�3 0.7

ence analysis for the hydrodynamical linear mode (u � a). Errors were determined by comparing the numerical/analytic solutions. t = 1.

L1(q) R L1(q) R L1(m) R L1(m) R L1(E) R L1(E) R

8.9E�9 – 3.3E�8 – 8.9E�9 – 3.3E�8 – 1.3E�8 – 5.0E�8 -
2.1E�9 2.1 1.2E�8 1.5 2.1E�9 2.1 1.2E�8 1.5 3.1E�9 2.1 1.8E�8 1.5
4.2E�10 2.3 4.2E�9 1.5 4.2E�10 2.3 4.2E�9 1.5 6.3E�10 2.3 6.3E�9 1.5
8.2E�11 2.4 1.4E�9 1.6 8.2E�11 2.4 1.4E�9 1.6 1.2E�10 2.4 2.1E�9 1.6

ence analysis for the hydrodynamical linear mode (u). Errors were determined by comparing the numerical/analytic solutions. t = 1.

L1(q) R L1(q) R L1(m) R L1(m) R L1(E) R L1(E) R

1.3E�8 – 4.0E�8 – 1.3E�8 – 4.0E�8 – 6.7E�9 – 2.0E�8 –
3.6E�9 1.9 1.4E�8 1.5 3.6E�9 1.9 1.4E�8 1.5 1.8E�9 1.9 7.1E�9 1.5
8.8E�10 2.0 5.0E�9 1.5 8.8E�10 2.0 5.0E�9 1.5 4.4E�10 2.0 2.5E�9 1.5
2.3E�10 1.9 1.7E�9 1.6 2.3E�10 1.9 1.7E�9 1.6 1.2E�10 1.9 8.5E�10 1.6



Table 5
Convergence analysis for the hydrodynamical linear mode (u + a). Errors were determined by comparing the numerical/analytic solutions. t = 1.

Ncell L1(q) R L1(q) R L1(m) R L1(m) R L1(E) R L1(E) R

32 8.9E�9 – 3.3E�8 – 8.9E�9 – 3.3E�8 – 1.3E�8 – 5.0E�8 -
64 2.1E�9 2.1 1.2E�8 1.5 2.1E�9 2.1 1.2E�8 1.5 3.1E�9 2.1 1.8E�8 1.5
128 4.2E�10 2.3 4.2E�9 1.5 4.2E�10 2.3 4.2E�9 1.5 6.3E�10 2.3 6.3E�9 1.5
256 8.2E�11 2.4 1.4E�9 1.6 8.2E�11 2.4 1.4E�9 1.6 1.2E�10 2.4 2.1E�9 1.6
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8.3. Sod shock tube

The Sod shock tube is an excellent test of an algorithm’s ability to resolve nonlinear behavior. This well known test con-
sists of two constant states separated by a discontinuity (i.e., a Riemann problem).

Parameters:
Uðx < xint;0Þ ¼

1
0
1

ðc�1Þ

E0
r

F0
r

0BBBBBBB@

1CCCCCCCA; Uðxint < x; 0Þ ¼

0:125
0

0:1
ðc�1Þ

E0
r

F0
r

0BBBBBBB@

1CCCCCCCA;

xint ¼ 0:5; tend ¼ 0:2; Ncell ¼ 256; outflow BC:
As the Euler equations evolve in time, a rarefaction fan, contact discontinuity, and shock wave form [51,56]. Fig. 3 shows a
higher-order accurate solution to the Sod shock tube problem, where discontinuities are separated by only one grid cell.

9. Radiation subsystem

In order to develop a reliable and robust numerical method for full radiation hydrodynamics, Sekora and Stone [49] exam-
ined the radiation subsystem, which is a simpler set of equations that minimizes complexity while maintaining the rich
hyperbolic-parabolic behavior associated with balance laws that have stiff source terms. If one initially sets the material flow
to be stationary such that u ? 0 in Eqs. (44) and (45), then the variables, fluxes, and source terms for the radiation subsystem
are given by:
@Er

@t
þ C

@Fr

@x
¼ CraðT4 � ErÞ; ð92Þ

@Fr

@t
þ Cf

@Er

@x
¼ �CrtFr : ð93Þ
In order to determine how Nike’s backward Euler upwinding scheme resolves the radiation subsystem, the following set of
parameters were chosen.

Parameters:
C ¼ 105; P ¼ 10�20; q0; m0; E0 ¼ 10�20;

Dt ¼ mDx
f 1=2C

; Ncell ¼ ½32; 64; 128; 256:
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Fig. 3. Sod shock tube. t = 0.2, Ncell = 256.
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When conducting tests on the backward Euler upwinding scheme, one expects R = 1.0 for smooth initial data (e.g. Gaussian
pulse) and R ’ 0.5 for discontinuous initial data (e.g. square pulse). This claim is true for all first-order spatially accurate
numerical methods when applied to an advection-type problem (ut + a ux = 0) [27]. By no means was the material flow held
stationary (u = 0) throughout the evolution of the following numerical tests. All problems were solved with the full dynam-
ical Nike code. The fact that the material quantities remain zero in these tests demonstrates the robustness of the overall
method. The following problems were initialized according to:
Table 6
Converg
solution

Ncell

32
64
128
256
512
1024
2048
Uðx;0Þ ¼ q0;m0; E0; E0
r ; F

0
r

� �
: ð94Þ
9.1. Linear advection – free steaming limit

In the free streaming limit, the radiation subsystem reduces to Eqs. (18) and (19). If one takes an additional temporal and
spatial partial derivative of the radiation subsystem in the free streaming limit and subtracts the resulting equations, then
one finds two decoupled wave equations that have the following analytic solutions:
Erðx; tÞ ¼ E0ðx� f 1=2CtÞ; ð95Þ
Frðx; tÞ ¼ F0ðx� f 1=2CtÞ: ð96Þ
Parameters:
ra;rt ¼ 10�20; f ¼ 1; xmin ¼ 0; xmax ¼ 1; periodic BC;

IC for Gaussian Pulse : E0
r ; F

0
r ¼ exp �ðvðx� lÞÞ2

� �
; v ¼ 20; l ¼ 0:5;

IC for Square Pulse : E0
r ; F

0
r ¼

1 0:4 < x < 0:6;
0 otherwise:




Graphically, these initial conditions give rise to numerical solutions with profiles that are identical to those shown in Figs. 1
and 2. In Tables 6 and 7, one observes first-order accurate convergence rates. What is most interesting is how long it takes
(i.e., how high of a spatial resolution is necessary) to see R ? 1 for a Gaussian pulse in the free streaming limit. Yet, this result
is not wholly unexpected. In this test, one is examining advective behavior. It is widely known that implicit algorithms per-
form poorly when trying to capture the propagation of individual wave modes. The fact that the backward Euler upwinding
scheme obtains the correct solution in a stable and accurate manner is a testament to the robustness of the overall method.
Moreover, resolving individual radiative waves associated with the speed of light is not the primary concern of the hybrid
Godunov method. Therefore, it is of little consequence that such high spatial resolution is necessary to see a first-order accu-
rate convergence rate for radiation quantities in the free streaming limit.
ence analysis for a Gaussian pulse in the free streaming limit (radiation subsystem). Errors were determined by comparing the numerical/analytic
s. t = 1.

L1(Er) R L1(Er) R L1(Fr) R L1(Fr) R

1.2E�1 – 7.2E�1 – 1.2E�1 – 7.2E�1 –
9.9E�2 0.3 7.1E�1 0.0 9.9E�2 0.3 7.1E�1 0.0
7.9E�2 0.3 6.3E�1 0.2 7.9E�2 0.3 6.3E�1 0.2
5.9E�2 0.4 5.1E�1 0.3 5.9E�2 0.4 5.1E�1 0.3
3.9E�2 0.6 3.7E�1 0.5 3.9E�2 0.6 3.7E�1 0.5
2.4E�2 0.7 2.5E�1 0.6 2.4E�2 0.7 2.5E�1 0.6
1.3E�2 0.9 1.4E�1 0.8 1.3E�2 0.9 1.4E�1 0.8

Table 7
Convergence analysis for a square pulse in the free streaming limit (radiation subsystem). Errors were determined by
comparing the numerical/analytic solutions. t = 1.

Ncell L1(Er) R L1(Fr) R

32 2.1E�1 – 2.1E�1 –
64 1.7E�1 0.3 1.7E�1 0.3
128 1.3E�1 0.4 1.3E�1 0.4
256 9.1E�2 0.5 9.1E�2 0.5
512 6.4E�2 0.5 6.4E�2 0.5
1024 4.5E�2 0.5 4.5E�2 0.5
2048 3.1E�2 0.5 3.1E�2 0.5
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9.2. Exponential growth/decay to thermal equilibrium

This test examines the temporal accuracy of how radiation variables are updated in the backward Euler upwinding
scheme. Given the radiation subsystem and the following initial conditions:
Table 8
Converg
t ¼ 10�

Ncell

32
64
128
256
E0
r ¼ constant across space; F0

r ¼ 0; T ¼ constant across space and time;
Fr ? 0 for all time. Therefore, the radiation subsystem reduces to the following ordinary differential equation:
dEr

dt
¼ CraðT4 � ErÞ; ð97Þ
which has the following analytic solution:
Er ¼ T4 þ ðE0
r � T4Þ expð�CratÞ: ð98Þ
For E0
r < T4 and F0

r ¼ 0, one expects exponential growth in Er until thermal equilibrium (Er = T4) is reached. For E0
r > T4 and

F0
r ¼ 0, one expects exponential decay in Er until thermal equilibrium is reached. Since Er is spatially uniform for this system,

this numerical test allows one to examine the temporal order of accuracy of the backward Euler upwinding scheme as a stiff
ODE integrator.

Parameters:
ra;rt ¼ 1; f ¼ 1; xmin ¼ 0; xmax ¼ 1;

IC for Growth : E0
r ¼ 1; F0

r ¼ 0; T ¼ 10;

IC for Decay : E0
r ¼ 104; F0

r ¼ 0; T ¼ 1:
From Fig. 4, one sees that the numerical solution corresponds with the analytic solution. In Table 8, ones sees that at lower
resolution the errors and convergence rates are identical for growth and decay. However, as the resolution increases one sees
disparity between these values, such that the growth tests exhibit convergence rates that are less than first-order while the
decay tests exhibit convergence rates that are greater than first-order. This asymmetry is expected for this situation because
it is associated with the unconditional stability of a backward Euler-type integrator. Whenever a problem is defined by
dynamical exponential growth, an algorithm works hard to maintain numerical stability. However, when a problem is de-
fined by dynamical exponential decay, the nature of the problem already ensures stability and the algorithm does not have
0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t / σa C

E r / 
T

4

Fig. 4. Exponential growth/decay of Er to thermal equilibrium. Ncell = 256.

ence analysis for exponential growth/decay in Er to thermal equilibrium. Errors were determined by comparing the numerical/analytic solutions.
5 ¼ 1=raC.

L1ðEg
r Þ R L1ðEg

r Þ R L1ðEd
r Þ R L1ðEg

r Þ R

2.9E�1 – 2.9E�1 – 2.9E�1 – 2.9E�1 –
1.4E�1 1.0 1.4E�1 1.0 1.4E�2 1.0 1.4E�1 1.0
7.8E�2 0.8 7.8E�2 0.8 6.2E�3 1.2 6.2E�2 1.2
4.5E�2 0.8 4.5E�2 0.8 1.7E�3 1.9 1.7E�2 1.9
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to work as hard. Nonetheless, one finds that the method is well behaved and obtains the correct solution with at least first-
order accuracy for even stiff values of the e folding time Dt

1=raC
P 1

� �
. This result credits the flexibility of the backward Euler

upwinding scheme as being a robust temporal integrator.

9.3. Weak equilibrium diffusion limit

In the weak equilibrium diffusion limit, the radiation subsystem reduces to the following set of equations:
@Er

@t
¼ C

3rt

@2Er

@x2 ; ð99Þ

Fr ¼ �
1

3rt

@Er

@x
: ð100Þ
The optical depth suggests the range of opacities for which diffusion is observed for this subsystem. If L ¼ rt‘diff > 1, then
one expects diffusive behavior for rt > 1/ ‘diff. Additionally, Eqs. (99) and (100) set the time scale tdiff and length scale ‘diff for
diffusion, where tdiff 	 ‘2

diff=D and D ¼ fC=rt . Given a diffusion problem with a Gaussian pulse defined over the entire real
line (ut � Duxx = 0), the analytic solution is given by the method of Green’s functions:
uðx; tÞ ¼
Z 1

�1
f ð�xÞGðx; t; �x;0Þd�x ¼ 1

ð4Dtv2 þ 1Þ1=2 exp
�ðvðx� lÞÞ2

4Dtv2 þ 1

 !
: ð101Þ
Parameters:
ra;rt ¼ 40; f ¼ 1=3; xmin ¼ �5; xmax ¼ 5;
Ncell ¼ ½320;640;1280;2560; Outflow BC;

IC for Gaussian Pulse :

E0
r ¼ exp �ðvðx� lÞÞ2

� �
; v ¼ 20; l ¼ 0;

F0
r ¼ �

f
rt

@E0
r

@x ¼
2fv2ðx�lÞ

rt
E0

r ;

T4 ¼ Er ;

8>>><>>>:
tend ¼ ½0;1;4;16 � 10�6:
One’s intuition about diffusive processes is based on considering an infinite domain. So to minimize boundary effects in the
numerical calculation, the computational domain and number of grid cells were expanded by a factor of 10. In Figs. 5 and 6,
one observes the diffusive behavior that is expected for this parameter regime. Additionally, the numerical solution com-
pares well with the analytic solution for a diffusion process defined over the entire real line (Eq. (101)). However, diffusive
behavior is only a first-order approximation to more complicated hyperbolic-parabolic dynamics taking place in radiation
hydrodynamics as well as the radiation subsystem. Therefore, one compares the numerical solution self-similarly and sees
the expected first-order convergence in Table 9.

In order to examine self-similar convergence in the weak equilibrium diffusion limit for the above tests, the backward
Euler upwinding scheme uses parameter values and a fine spatial resolution Dx to resolve the photon mean free path kt.
Therefore, the cell-optical depth LD is always fairly small, such that LD ¼ Dx=kt ¼ Dxrt ¼ ½1:25; 0:625; 0:3125; 0:15625
for rt = 40 and Ncell = [320, 640, 1280, 2560], respectively. Consequently, the photon mean free path is moderately resolved
which suggests that the backward Euler upwinding scheme is numerically consistent but not necessarily asymptotic pre-
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Fig. 5. Er in weak diff limit (rad subsystem). t = [0,1,4,16] � 10�6, Ncell = 2560.



Table 9
Convergence analysis for Er, Fr in the weak equilibrium diffusion limit. Errors were determined by a self-similar comparison of the numerical solutions.
t = 4 � 10�6.

Ncell L1(Er) R L1(Er) R L1(Fr) R L1(Fr) R

320 3.9E�2 – 1.1E�1 – 3.6E�3 – 1.3E�2 –
640 2.2E�2 0.8 6.7E�2 0.7 2.3E�3 0.6 9.0E�3 0.5
1280 1.2E�2 0.9 3.7E�2 0.9 1.3E�3 0.8 5.4E�3 0.7
2560 6.0E�3 1.0 1.9E�2 1.0 7.0E�4 0.9 2.9E�3 0.9
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Fig. 6. Fr in weak diff limit (rad subsystem). t = [0,1,4,16] � 10�6, Ncell = 2560.
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serving. This idea was first developed in the context of radiation hydrodynamics by Larsen et al. [26] although these authors
did not use the term asymptotic preserving. In order to explore this idea, consider the following hypothetical question - can
one say that a conventional Godunov method is asymptotic preserving for the the system defined by Eqs. (9)–(11)? If one
evolves the system according to Dt 	 1=C, then one expects diffusion behavior for certain parameter regimes because for
high spatial and temporal resolution consistency implies asymptotic preservation. However, because one has to use such fine
spatial and temporal resolution, a conventional Godunov method is not asymptotic preserving.

To demonstrate that the backward Euler upwinding scheme has some asymptotic preserving properties, one can use the
problem settings that were used earlier but rescale the spatial domain, initial conditions, and time for how long the compu-
tation runs so that LD increases by some significant amount, say 1000. According to this scaling, which is defined by the rela-
tion tdiff 	 ‘2

diff=D, one expects the profiles of Er and Fr to match the profiles shown in Figs. 5 and 6 except that the spatial scale
will have increased by a factor of 1000. Additionally, one expects the magnitude of Fr to decrease by a factor of 1000 because
in the weak equilibrium diffusion limit, Er behaves according to Eq. 101 and Fr behaves according to the following relation:
Frðx; tÞ ¼ �
f
rt

@Er

@x
¼ f

rt

2v2ðx� lÞ
4Dtv2 þ 1

Er: ð102Þ
Parameters:
ra;rt ¼ 40; f ¼ 1=3; xmin ¼ �5000; xmax ¼ 5000;
Ncell ¼ ½320;640;1280;2560; Outflow BC;

IC for Gaussian Pulse :

E0
r ¼ exp �ðvðx� lÞÞ2

� �
; v ¼ 0:02; l ¼ 0;

F0
r ¼ �

f
rt

@E0
r

@x ¼
2f v2ðx�lÞ

rt
E0

r ;

T4 ¼ Er ;

8>>><>>>:
tend ¼ ½0;1;4;16:
Results for these parameters are shown in Figs. 7 and 8. Again, one compares the numerical solutions self-similarly across
different spatial resolutions at t = 4 in Table 10 to examine the convergence properties of the backward Euler upwinding
scheme. From the values seen in Table 10, one initially sees first-order convergence. However, as the spatial resolution is
refined the error norms stop decreasing. This behavior suggests that for large cell-optical depths, the numerical solution
has converged on some asymptotic profile where higher spatial resolution does not enable further convergence because
of a competing process associated with the implicit discretization of the radiation subsystem in the backward Euler upwind-
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Fig. 7. Er in weak diff limit (rad subsystem) defined by large cell-optical depths. Red circles designate Ncell = 320 ðLD ¼ 1250Þ and black lines designate
Ncell ¼ 2560 ðLD ¼ 156:25Þ: t ¼ ½0;1;4;16.
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Fig. 8. Fr in weak diff limit (rad subsystem) defined by large cell-optical depths. Red circles designate Ncell ¼ 320 ðLD ¼ 1250Þ and black lines designate
Ncell ¼ 2560 ðLD ¼ 156:25Þ: t ¼ ½0;1;4;16.

Table 10
Convergence analysis for Er, Fr in the weak equilibrium diffusion limit defined by large cell-optical depths. Errors were determined by a self-similar comparison
of the numerical solutions. t = 4.

Ncell L1(Er) L1(Er) L1(Fr) L1(Fr)

320 3.9E�2 1.0E�1 3.4E�6 1.3E�5
640 2.0E�2 5.2E�2 1.8E�6 6.5E�6
1280 8.8E�2 6.6E�1 1.7E�5 1.3E�4
2560 8.8E�2 6.6E�1 1.7E�5 1.3E�4
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ing scheme. Furthermore, if one examines the discretization of the backward Euler HLLE scheme, one finds the following dif-
ference equation for the radiation energy:
�ðd1f 1=2ÞEnþ1
r;i�1 þ 1þ 2d1f 1=2 þ d2ra

� 	
Enþ1

r;i � d1f 1=2� 	
Enþ1

r;iþ1 þ � � � ¼ En
r;i þ � � � ð103Þ
This difference equation is important because it has the same functional discretization as a backward-time centered-space
scheme for a parabolic/diffusion equation. Therefore, one sees consistency associated with the truncation error and discret-
ization operator. All of the above insights suggest that the backward Euler upwinding scheme can preserve certain asymp-
totic limits. However, this does not suggest that the overall algorithm (i.e., hybrid Godunov method) is globally asymptotic
preserving. Further discussion of this topic is reserved for the conclusions at the end of the paper.
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9.4. Strong equilibrium diffusion limit

In the strong equilibrium diffusion limit, the radiation subsystem reduces to Eqs. (104) and (105), which suggest that
Fr ? 0 for all time and space while Er ¼ E0

r .
Table 1
Converg
t = 4 � 1

Ncell

320
640
1280
2560
@Er

@t
¼ 0; ð104Þ

Fr ¼ 0: ð105Þ
Parameters:
ra;rt ¼ 106; f ¼ 1=3; xmin ¼ �5; xmax ¼ 5;
Ncell ¼ ½320;640;1280;2560; Outflow BC

IC for Gaussian Pulse :

E0
r ¼ exp �ðvðx� lÞÞ2

� �
; v ¼ 20; l ¼ 0;

F0
r ¼ �

f
rt

@E0
r

@x ¼
2f v2ðx�lÞ

rt
E0

r ;

T4 ¼ Er :

8>>><>>>:

In this test, the numerical solution remains fixed at the initial distribution because ra and rt are so large. However, if one
fixed ‘diff and scaled time such that tdiff � ‘2

diff=D ¼ ‘2
diffrt=fC, then one would observe behavior similar to Figs. 5 and 6. Table

11 demonstrates the expected first-order convergent behavior as this test further illustrates the robustness of the backward
Euler upwinding scheme to handle very stiff source terms.
9.5. Su–Olson non-equilibrium diffusion

Due to the complexity of the equations for radiation hydrodynamics, reference problems with analytic solutions are rare
outside of the free streaming limit. However, Marshak [35] presented a time-dependent radiative transfer problem. The test
which is described below is a variation of the problem presented by Marshak [35] and was analyzed by Pomraning [45] but
more extensively by Su and Olson [54]. Therefore, this test is referred to as the Su–Olson problem.

The following test investigates non-equilibrium radiation diffusion as well as the physics of matter-radiation coupling
and consists of a purely absorbing, homogeneous medium that occupies the one-dimensional, semi-infinite space
0 6 x <1. Initially, the medium is defined by zero radiation energy Er and material temperature T. Upon beginning the cal-
culation, a time independent radiative flux F inc

r impinges upon the left boundary at x = 0 [54]. If one ignores hydrodynamic
motion as well as heat conduction and further assumes a diffusion-type approximation, then one can write the following
simplified expressions [54,46]:
@Erðx; tÞ
@t

� @

@x
Cf
rt

@Erðx; tÞ
@x

� �
¼ Cra T4ðx; tÞ � Erðx; tÞ

� �
; ð106Þ

cvðTÞ
@Tðx; tÞ
@t

¼ �Cra T4ðx; tÞ � Erðx; tÞ
� �

; ð107Þ
where cv is the specific heat capacity of the material medium and T is related to the material internal energy e = qcvT. If one
chooses the following functional form for the specific heat cv = fT3, then Eqs. (106) and (107) can be written as linear ODEs in
Er and T4. Here, f is an arbitrary constant that if chosen appropriately simplifies how material and radiation quantities evolve
[54,46]. Lastly, the boundary and initial conditions are defined by:
BC : Erð0; tÞ �
2
rt

@Erð0; tÞ
@x

¼ 4F inc
r ; Erð1; tÞ ¼ 0; ð108Þ

IC : Erðx;0Þ ¼ Tðx;0Þ ¼ 0: ð109Þ
If one sets f = 4 and defines the radiation flux as a dependent variable, then the above system can be cast into a form that
resembles the radiation subsystem where the material temperature temporally evolves with the radiation quantities:
1
ence analysis for Er, Fr in the strong equilibrium diffusion limit. Errors were determined by a self-similar comparison of the numerical solutions.
0�6.

L1(Er) R L1(Er) R L1(Fr) R L1(Fr) R

1.1E�1 – 8.1E�1 – 9.4E�7 – 7.5E�6 –
6.1E�2 0.9 5.0E�1 0.7 6.3E�7 0.6 7.0E�6 0.1
3.1E�2 1.0 2.6E�1 0.9 3.5E�7 0.8 4.5E�6 0.6
1.6E�2 1.0 1.3E�1 1.0 1.9E�7 0.9 2.4E�6 0.9
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@Er

@t
þ @Fr

@x
¼ CraðT4 � ErÞ; ð110Þ

Fr ¼ �
Cf
rt

@Er

@x
; ð111Þ

@T4

@t
¼ ��CraðT4 � ErÞ; ð112Þ

IC : Erð0; tÞ þ 2Frð0; tÞ ¼ 4F inc
r : ð113Þ
This problem setup along with specific initial and boundary conditions as well as a unique choice of parameters causes the
radiation subsystem to exhibit well defined dynamics characterized by the diffusion limit and non-equilibrium behavior. Su
and Olson [54] arrived at a semi-analytic solution to the above system by defining dimensionless independent variables
ðX ; T Þ and dependent variables ðU;VÞ such that:
X � ra

ffiffiffi
3
p

x; T � �Crat; ð114Þ
UðX ; T Þ � Erðx; tÞ=4F inc

r ;VðX ; T Þ � T4ðx; tÞ=4F inc
r : ð115Þ
Using these dimensionless variables, Eqs. (106)–(109) become [54,46]:
�
@U
@T �

@2U
@X2 ¼ V � U; ð116Þ

@V
@T ¼ U � V; ð117Þ

BC : Uð0; T Þ � 2ffiffiffi
3
p @Uð0; T Þ

@X ¼ 1;Uð1; T Þ ¼ 0; ð118Þ

IC : UðX ;0Þ ¼ VðX ;0Þ ¼ 0: ð119Þ
The first boundary condition in Eq. (118) enforces the constraint of constant flux on the left side of the computational do-
main. This special boundary condition can be implemented by imposing the time-varying Dirichlet condition Uð0; T Þ [46].
This quantity, which is evaluated at X ¼ 0, is given by [54]:
UðX ;T Þ¼1�2
ffiffiffi
3
p

p

Z 1

0
dnexpð�T n2Þ sinðX� 1ðnÞþH1ðnÞÞ

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ4� 2

1ðnÞ
q

0B@
1CA� ffiffiffi

3
p

p
expð�T Þ

Z 1

0
dnexpð�T =�nÞ sinðX� 2ðnÞþH2ðnÞÞ

nð1þ�nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ4� 2

2ðnÞ
q

0B@
1CA;

ð120Þ

� 1ðnÞ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

1�n2

s
; � 2ðnÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�nÞ �þ1

n

� �s
; ð121Þ

HnðnÞ¼ cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

3þ4� 2
nðnÞ

s
; n¼1;2: ð122Þ
Since the backward Euler upwinding scheme is a first-order accurate method, it suffices to use the Trapezoidal Rule Tint(f) =
(f(b) + f(a))(b � a)/2 to numerically evaluate the integrals in Eq. (120). Higher-order integration techniques were also at-
tempted, but these methods had little effect on the accuracy of the solution computed by the backward Euler upwinding
scheme. One additional difficulty associated with evaluating (120) is that the integrands are highly oscillatory for T � 1.
Therefore, one uses the following asymptotic expression whenever T < 10�3 [54,46]:
Uð0; T Þ ¼
ffiffiffiffiffiffiffi
3T
p�

r
� 3T

4�
þ T

2�

ffiffiffiffiffiffiffiffiffi
T

3p�

r
þOðT 2Þ: ð123Þ
The last element in setting up this problem is updating the material temperature T. In previous tests, T was computed by (i)
using other material quantities: T = p/q, (ii) defining a fixed background temperature: T(x, t) = T0(x,0), or (iii) assuming the
system to be in thermal equilibrium: T4 = Er. Due to the non-equilibrium nature of this problem, one implicitly advances
T according to the following relation prior to solving the radiation variables in the backward Euler upwinding scheme [54]:
T4
i

� �nþ1
¼ 1

1þ Dt�Cra

� �
T4

i

� �n
þ Dt�CraEn

r;i

� �
: ð124Þ
The following parameters were chosen because of earlier work by Sekora and Stone [49], Su and Olson [54], and Reynolds et
al. [46]. By setting F inc

r ¼ 1=4, one normalizes the problem such that Er(x, t) and T4(x, t) directly correspond to UðX ; T Þ and
VðX ; T Þ under the appropriate change of spatial and temporal coordinates [54]. Since the Su–Olson problem assumes a dif-
fusion approximation, one chooses ra,rt = 40 like in the test problem related to the weak equilibrium diffusion limit. Rey-
nolds et al. [46] examine the spatial range 0 6 X 6 35 with a resolution of 2048 grid cells. These values and the relation
X � ra

ffiffiffi
3
p

x define the spatial aspect of the computational domain. Furthermore, Su and Olson [54] tabulate semi-analytic
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solutions for the dimensionless time T ¼ ½1;3;10;30;100. Therefore, these values and the relation T � �Crat define the
temporal aspect of the computational domain. Again, this problem was solved using the full dynamical Nike node as calcu-
lations were performed using � = 0.1, 1.0.

Parameters:
Fig. 9.

Fig. 10
respect
ra;rt ¼ 40; f ¼ 1=3; F inc
r ¼ 1=4;

xmin ¼ 0; xmax ¼ 0:5; Ncell ¼ ½32;64;128;256;512;

T ¼ ½1;3;10;30;100 : � ¼ 0:1! t ¼ ½2:5;7:5;25;75;250 � 10�6;

� ¼ 1:0! t ¼ ½2:5;7:5;25;75;250 � 10�7:

(

Fig. 9 shows how the Su–Olson problem evolves for � = 0.1. Here, one sees how T4 (dashed lines) and Er (solid lines) approach
the same value at t = 250 � 10�6 and the problem reaches thermal equilibrium. Also included in Fig. 9 are values for the
semi-analytic solution that were tabulated by Su and Olson [54]. Circles and squares mark semi-analytic values for Er and
T4, respectively.

Fig. 10 demonstrates how the numerical solution for the Su–Olson problem converges to the semi-analytic values. By
visually inspecting this plot, one observes two important results. First, one notices that the magnitude of the error at a given
point decreases by a factor of 2 as the grid spacing Dx decreases by a factor of 2. This behavior characterizes a first-order
convergence rate, which one expects for the backward Euler upwinding scheme. Second, this convergence test validates that
the hybrid Godunov method can capture diffusion behavior arising from a system of balance laws with stiff relaxation source
terms. When one compares the results in Fig. 10 to the results in Fig. 5 of Reynolds et al. [46], one sees that the magnitude of
the error is smaller in Fig. 10. Calculations were also performed for � = 1. These solutions also passed through the semi-ana-
lytic solutions of Su and Olson [54].
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Su–Olson problem with � = 0.1, where the sets of curves from bottom to top correspond to t = [2.5,7.5,25,75,250] � 10�6, respectively. Ncell = 512.
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10. Full radiation hydrodynamics

One example of full radiation hydrodynamics that has been studied analytically and numerically is the radiating shock.
For sufficiently strong shocks, the post shock material emits radiation which penetrates upstream and preheats the system
[16,21]. Here, the radiative transport of energy plays a significant role in defining the shock structure and evolution [46].
Furthermore, if Pr > p then radiation also transports momentum.

Lowrie and Rauenzahn [34] and Lowrie and Edwards [30] give an excellent summary of the solution phenomenology
associated with radiating shock waves which are classified into two main types: subcritical and supercritical. As the strength
of a shock increases, the temperature behind the shock T1 rises and produces a flux that penetrates the upstream material
and heats the region from a reference temperature T0 to temperature Tp > T0. If Tp < T1, then the shock is termed subcritical.
Another characteristic of these shock waves is that at higher flow velocities, Tp increases relative to T1. At some critical veloc-
ity ucrit, Tp = T1 and such a shock is termed critical. However, if Tp = T1 and u > ucrit, then the shock is termed supercritical
[16,21,34,58]. If the material density qp associated with temperature Tp is less than the material density associated with
the temperature behind the shock T1, then the material temperature profile has the following features (i) precursor: material
is preheated ahead of the shock front by radiation, (ii) Zel’dovich spike: overshoot at the shock front that reaches a non-equi-
librium temperature Ts > T1, and (iii) relaxation region: as extra energy is radiated away, the material temperature declines
from Ts to T1 where the width of the region is proportional to the post-shock optical depth [34,46].

The test problems in this section are based on Ensman [16], which considered the case of a piston moving through static
media and followed the evolution with a Lagrangian code. Since Nike evolves the dynamical quantities in the Eulerian frame,
the problem can be recast such that a moving medium impacts a stationary reflecting boundary. The material velocity is ini-
tialized to match the piston speed specified in the Ensman paper. To produce figures that are directly comparable to results
obtained from a Lagrangian code, one transforms the coordinates of the Eulerian frame calculation according to xEulerian =
xlab � uinflowt, where xlab is the lab frame coordinate, xEulerian is the Eulerian frame coordinate, and uinflow is the inflow velocity
[21]. The following physical parameters were adapted from Ensman [16] and Hayes & Norman 2003:

Physical Parameters:
c ¼ 3� 1010 cm s�1; a1 ¼ 3� 104 cm s�1; f ¼ 1=3

L ¼ 7� 1010 cm; L ¼ L=kt ¼ 22) kt ¼ 3:2� 109 cm; Ncell ¼ 300;

q0 ¼ 7:78� 10�10 g cm�3; T1 ¼ Tr;1 ¼ ðEr;1Þ1=4 ¼ 10 K; ra ¼ 3:1� 10�10 cm�1;

Subcritical : uinflow ¼ �6� 105 cm s�1; t ¼ ½1:7;2:8;3:8 � 104 s;

Supercritical : uinflow ¼ �20� 105 cm s�1; t ¼ ½4;7:5;13 � 103 s;

Tðx;0Þ ¼ T1 þ 75ðx=LÞ K; Left BC : Reflecting; Right BC : Inflow:
Motivated by these physical parameters and the non-dimensionalization adopted throughout this paper [31,33,34], one ar-
rives at the following set of values:
Uðx;0Þ ¼

q0

m0

E0

E0
r

F0
r

0BBBBBB@

1CCCCCCA ¼
q0

q0uinflow

1
2 q0u2

inflow þ
q0Tðx;0Þ
ðc�1Þ

T4ðx; 0Þ
�f
rt

@Er
@x ¼

�f
rt

4T3ðx; 0Þ dT
dx

� �
¼ �30fT3ðx;0Þ

rt

0BBBBBBBB@

1CCCCCCCCA
: ð125Þ
Non-dimensionalized Parameters:
C ¼ 106; P ¼ 10�11; ra; rt ¼ 10; f ¼ 1=3;

Dt ¼ mDx
maxiðjuij þ aeff ;iÞ

; xmin ¼ 0; xmax ¼ 2; Ncell ¼ 512;

q0 ¼ 1; Tðx;0Þ ¼ T1 þ 7:5
x

xmax � xmin

� �
; T1 ¼ Tr;1 ¼ ðEr;1Þ1=4 ¼ 1;

Subcritical : uinflow ¼ �20; t ¼ ½2;2:5;3 � 10�2;

Supercritical : uinflow ¼ �66:6; t ¼ ½3;6;9 � 10�3;

Left BC : Reflecting; Right BC : Inflow:
Figs. 11 and 12 show the results for the subcritical shock. Here, the the Zel’dovich spike (temperature overshoot) is sharply
peaked, lies just behind the shock, and is only seen in the material temperature profile. Additionally, the material and radi-
ation temperatures demonstrate non-equilibrium behavior on both sides of the shock front [21]. Furthermore, the flux pro-
file is nearly symmetric and matches results discussed by Ensman [16]. As the profile moves from left to right, the shock



0.4 0.6 0.8 1 1.2
0

40

80

120

160

xlab

T,
 T

r  (
su

bc
rit

ic
al

)

T
Tr
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front is located at the point of maximum flux [16]. It is important to note how sharply the hybrid Godunov method captures
radiative shock fronts, where the discontinuity in T is represented with one computational cell.

Lowrie and Edwards [30] examined semi-analytic solutions of planar radiative shock waves with a gray non-equilibrium
diffusion model for radiation hydrodynamics and derived an estimate of the maximum material temperature at the Zel’do-
vich spike:
TLE
max ¼max T1;

3ðcM2
0 þ 1Þ þ cPð1� T4

1Þ
� �2

36cM2
0

8><>:
9>=>;; ð126Þ
whereM0 ¼ uinflow is the Mach number which determines the strength of the shock. The definitions of the other quantities
remain unchanged from when they were first presented in this paper. Furthermore, the authors cite a coarser estimate of this
maximum temperature which was originally derived by Mihalas and Weibel-Mihalas [40]:
TMM
max ¼ ð3� cÞT1: ð127Þ
In Fig. 11, the material temperature behind the shock T1 � 135 and material temperature at the height of the Zel’dovich spike
Ts � 156 for times t = [2,2.5,3] � 10�2. This value compares well with TLE

max ¼ 167 as well as the coarser estimate TMM
max ¼ 180.

Figs. 13 and 14 show the results for the supercritical shock. Here, the shock front is located at the temperature maximum.
In many instances, computer codes have to resort to adaptive mesh refinement to reasonably capture the sharp temperature
spike seen in Fig. 13. In these plots, one sees the expected results of an extended region where Tp 6 T1 and the radiation flux
Fr being asymmetric [16,30,34]. In Fig. 13, T1 = [646,702,738] and Ts = [810,841,893] for t = [3,6,9] � 10�3. For this spatial
resolution, these values are within the coarser estimate TMM

max ¼ ½861;936;984.
The tests herein examine the behavior of full radiation hydrodynamics. As mentioned earlier, radiation is the dominant

transport mechanism for energy and momentum when Pr > p which is equivalent to fEr > p. If one considers equilibrium dif-
fusion behavior and the material equation of state, then the above inequality becomes fT4

r > qT. Since q is initially set equal
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to unity and f = 1/3, this inequality is satisfied by the profiles in Figs. 11 and 13 – illustrating that radiation can function as
the dominant transport mechanism.

Fig. 15 demonstrates self-similar convergent behavior in the numerical solution for a Zel’dovich spike in the material tem-
perature T of a supercritical shock wave for a range of resolutions Ncell = [256,512,1024,2048,4096,8192]. These results were
initialized with the same conditions as the plot of t = 6 � 10�3 in Fig. 13. Fig. 15 clearly shows asymmetry in the supercritical
Zel’dovich spike. This observation corresponds well with the discussion in Lowrie and Rauenzahn [34] and Lowrie and Ed-
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Fig. 15. A supercritical Zel’dovich spike for various spatial resolutions. t = 0.006.
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wards [30] as well as the numerical results in Sincell et al. [50]. However, this physical feature is often missing in many radi-
ation hydrodynamical calculations of supercritical shocks. Lastly, the sharp discontinuity from Ts to Tp as well as the gradual
decay from Ts to T1 in the relaxation region is a testament to the hybrid Godunov method in the Nike code.
11. Conclusions and future work

This paper presents a hybrid Godunov method for full radiation hydrodynamics. Numerical tests focusing on the mate-
rial components, radiation components, and fully coupled system show this technique to be uniformly well behaved
across various parameter regimes. The advantage of this algorithm is that it is accurate, stable, robust, explicit of the mate-
rial flow scale, unsplit, and fully couples matter and radiation without invoking a diffusion-type approximation. Two addi-
tional numerical tests that should be investigated are the dispersion analysis of the boundary and initial value problems
for radiation hydrodynamical linear waves in one spatial dimension. Despite previous computational work being done on
the boundary value problem by Mihalas and Mihalas [39] and Turner and Stone [58], a computational test based upon the
initial value problem that resembles the propagation of linear eigenmodes in hydrodynamics has not been carried out.
Constructing such a test seems possible given the research of Lowrie et al. [33], Blaes and Socrates [2], and Johnson
[24]. These tests are important because they will examine the damping rates and propagation speeds of various radiation
hydrodynamical waves.

In this paper, it was shown that the effective eigen-quantities of the modified Godunov scheme for the split material sub-
system exhibits adiabatic and isothermal behavior in certain parameter regimes while evolving the overall radiation hydro-
dynamical system according to an effective CFL condition. Additionally, the modified Godunov scheme resolves the free
streaming (hydrodynamical) limit with second-order accuracy for the material quantities and captures the appropriate
material temperature profiles for subcritical and supercritical radiating shock waves that are influenced by non-equilibrium
diffusion behavior. For these reasons, one concludes that the modified Godunov scheme has some asymptotic preserving
properties. Furthermore, this paper showed that the backward Euler upwinding scheme for the split radiation subsystem
recovers free streaming, weak equilibrium diffusion, and strong equilibrium diffusion behavior even for large cell-optical
depths. Additionally, the backward Euler upwinding scheme can be cast in a form where its discretization resembles a back-
ward-time centered-space differencing of a parabolic/diffusion operator - illustrating consistency in the discretization oper-
ator. For these reasons, one concludes that the backward Euler upwinding scheme has some asymptotic preserving
properties. Despite the volume of numerical tests that are showcased in this paper, it in not clear that the overall algorithm
(i.e., the hybrid Godunov method which combines the modified Godunov and backward Euler upwinding schemes for their
respective subsystems) is globally asymptotic preserving. One should carry out a discretization analysis on the full hybrid
Godunov method in the spirit of Lowrie and Morel [32] which defined in a mathematically rigorous fashion what it means
for an algorithm to be asymptotic preserving. With respect to this kind of work, full radiation hydrodynamics may not be the
best system to analytically investigate asymptotic preserving properties of the hybrid Godunov method because of the com-
plexity associated with the system. One should conduct such an analysis on a set of equations like the one shown in Appen-
dix E which is a simpler system of hyperbolic balance laws with dual multiscale behavior. Additionally, it would be
interesting to investigate the algorithmic coupling between the material and radiation subsystems by implicitly updating
the material temperature T in a predictor context similar to Eq. (124). Such an update could be made after the backward
Euler upwinding scheme advances the radiation quantities but before the modified Godunov scheme advances the material
quantities.

This numerical method employs familiar algorithmic machinery without a significant increase in computational over-
head. Therefore, it seems reasonable that one will be able to extend the ideas in this paper to multiple spatial dimensions
via a MUSCL or CTU approach [7]. Such work is currently underway. Additionally, the new algorithmic ideas were cast in
such a way that they should be easily implemented into existing codes, particularly ones that carry out MHD calculations.
Investigating full radiation MHD in multiple spatial dimensions is an area of research on the forefront of computational sci-
ence and a subject that the authors want to pursue. Moreover, one would like to combine a method for radiation hydrody-
namics with a technique for updating the variable tensor Eddington factor f which is used in the closure relation Pr = fEr for
the radiation moment equations. Short characteristic SN as well as Monte Carlo methods are promising techniques for solving
the photon transport equation and updating f at each temporal iteration [5]. Furthermore, the question remains as to
whether the hybrid Godunov method and mixed frame approach are applicable to problems defined by multigroup physics.
Lastly, it would be interesting to compare the performance and accuracy of the hybrid Godunov method with an algorithm
that is either fully implicit, based upon the PNPM family of schemes [12,11], or uses a fully relativistic treatment of radiation
and matter [6,43].
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Appendix 1. Modifications to matrix equations

Periodic boundary conditions
h3 h4 h5 h6 0 . . . . . . 0 h1 h2

/3 /4 /5 /6 0 . . . . . . 0 /1 /2

h1 h2 h3 h4 h5 h6 0 . . . . . . 0 0

/1 /2 /3 /4 /5 /6 0 . . . . . . 0 0

0 0 h1 h2 . . .

0 0 /1 /2 . . .

..

.

0 . . . . . . 0 h1 h2 h3 h4 h5 h6

0 . . . . . . 0 /1 /2 /3 /4 /5 /6

h5 h6 0 . . . . . . 0 h1 h2 h3 h4

/5 /6 0 . . . . . . 0 /1 /2 /3 /4

0BBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCA

Enþ1
r;1 þ h7

Fnþ1
r;1 þ /7

Enþ1
r;2 þ h7

Fnþ1
r;2 þ /7

..

.

Enþ1
r;N�1 þ h7

Fnþ1
r;N�1 þ /7

Enþ1
r;N þ h7

Fnþ1
r;N þ /7

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

¼

En
r;1 þ h7

Fn
r;1 þ /7

En
r;2 þ h7

Fn
r;2 þ /7

..

.

En
r;N�1 þ h7

Fn
r;N�1 þ /7

En
r;N þ h7

Fn
r;N þ /7

0BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

Outflow boundary conditions
h3 þ h1 h4 þ h2 h5 h6 0 . . . . . . 0

/3 þ /1 /4 þ /2 /5 /6 0 . . . . . . 0

h1 h2 h3 h4 h5 h6 0 . . . . . . 0 0

/1 /2 /3 /4 /5 /6 0 . . . . . . 0 0

0 0 h1 h2 . . .

0 0 /1 /2 . . .

..

.

0 . . . . . . 0 h1 h2 h3 h4 h5 h6

0 . . . . . . 0 /1 /2 /3 /4 /5 /6

0 0 0 . . . . . . 0 h1 h2 h3 þ h5 h4 þ h6

0 0 0 . . . . . . 0 /1 /2 /3 þ /5 /4 þ /6
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Reflecting boundary conditions
h3 þ h1 h4 � h2 h5 h6 0 . . . . . . 0

/3 þ /1 /4 � /2 /5 /6 0 . . . . . . 0

h1 h2 h3 h4 h5 h6 0 . . . . . . 0 0

/1 /2 /3 /4 /5 /6 0 . . . . . . 0 0

0 0 h1 h2 . . .

0 0 /1 /2 . . .

..

.

0 . . . . . . 0 h1 h2 h3 h4 h5 h6

0 . . . . . . 0 /1 /2 /3 /4 /5 /6
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Inflow boundary conditions
h3 h4 h5 h6 0 . . . . . . 0

/3 /4 /5 /6 0 . . . . . . 0

h1 h2 h3 h4 h5 h6 0 . . . . . . 0 0

/1 /2 /3 /4 /5 /6 0 . . . . . . 0 0

0 0 h1 h2 . . .

0 0 /1 /2 . . .

..

.

0 . . . . . . 0 h1 h2 h3 h4 h5 h6

0 . . . . . . 0 /1 /2 /3 /4 /5 /6

0 0 0 . . . . . . 0 h1 h2 h3 h4

0 0 0 . . . . . . 0 /1 /2 /3 /4
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Appendix B. Piecewise Linear Limiting Techniques

Componentwise limiting

1. Compute left, center, and right differences: D�Ui ¼ Ui � Ui�1; DcUi ¼ 1
2 ðUiþ1 � Ui�1Þ; DþUi ¼ Uiþ1 � Ui

2. Enforce the TVD condition: DlimUi = 2 min (jD�Uij,jD+Uij)
3. Define limited slope:
PDðDUiÞ ¼
min jDcUij; jDlimUijð Þsign DcUið Þ D�UiDþUi > 0;
0 D�UiDþUi 6 0:




Limiting across characteristic fields

1. Compute left, center, and right differences like Step 1 above
2. Using the left material eigenvectors Lm

eff given in Eq. (78), expand the differences in characteristic variables where k
defines a specific row vector of Lm

eff : D�Uk
i ¼ Lm;k

eff � D�Ui; DcUk
i ¼ Lm;k

eff � DcUi; DþUk
i ¼ Lm;k

eff � DþUi

3. Enforce the TVD condition one field at a time: DlimUk
i ¼ 2 minðjD�Uk

i j; jDþUk
i jÞ

4. Define limited characteristic variables:
DUk
i ¼

min jDcUk
i j; jDlimUk

i j
� 	

sign DcUk
i

� 	
D�Uk

i DþUk
i > 0;

0 D�Uk
i DþUk

i 6 0:

(

5. Using the right material eigenvectors Rm

eff given in Eq. (77), reconstruct the limited slopes for each of the material quan-
tities where k defines a specific column vector of Rm

eff : DUk
i ¼

P
kDUk

i Rm;k
eff

Appendix C. Material flux evaluations

The Lax–Friedrichs flux is first-order accurate for smooth solutions, where:
FLF
iþ1=2 ¼

1
2

FðULÞ þ FðURÞð Þ þ 1
2

Dx
Dt
ðUL � URÞ:
The Richtmyer flux is second-order accurate for smooth solutions and is based on an intermediate quantity UR
iþ1=2, where:
FR
iþ1=2 ¼ FðUR

iþ1=2Þ; UR
iþ1=2 ¼

1
2
ðUL þ URÞ þ

1
2

Dt
Dx

FðULÞ � FðURÞð Þ:
The HLLE flux is higher-order accurate for smooth solutions and is derived by approximately solving for the Rankine-Hugon-
iot shock conditions of the Riemann problem, where:
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FHLLE
iþ1=2 ¼

FðULÞ 0 6 sL

FHLLE sL 6 0 6 sR

FðURÞ sR 6 0

8><>: ;

FHLLE ¼ sRFðULÞ � sLFðURÞ þ sLsRðUR � ULÞ
sR � sL

:

Here, sL,R are the wave speeds to the left and right of a cell interface that can be estimated in the following three ways in the
algorithm (i) directly: sL,R = uL,R � aeff(UL,R), (ii) using Roe-averaged quantities: sL;R ¼ �uL;R � �aeff ðUL;RÞ where �j ¼ ðq1=2

L jL þ
q1=2

R jRÞ=ðq1=2
L þ q1=2

R Þ, and (iii) taking the maximum wave speed over all grid cells: sL,R = �smax where smax = maxi(juij + aeff,i).
It is important to note that when sL,R = �smax the HLLE flux function algebraically becomes the Lax–Friedrichs flux function.

Appendix D. Boundary conditions for corrector scheme

If one assumes that there is a computational grid of N cells starting at the index istart and ending at the index iend and if one
further assumes that there are Nghost cells on either side of N, then one defines boundary conditions in the following ways:

Periodic boundary conditions
Left : Uðistart � Nghost ; . . . ; istart � 1Þ ! Uðiend � Nghost þ 1; . . . ; iendÞ;
Right : Uðiend þ 1; . . . ; iend þ NghostÞ ! Uðistart; . . . ; istart þ Nghost � 1Þ:
Outflow boundary conditions
Left : Uðistart � Nghost ; . . . ; istart � 1Þ ! UðistartÞ;
Right : Uðiend þ 1; . . . ; iend þ NghostÞ ! UðiendÞ:
Reflecting boundary conditions
Left : fq; E; Ergðistart � Nghost ; . . . ; istart � 1Þ ! fq; E; Ergðistart þ Nghost � 1; . . . ; istartÞ;
fm; Frgðistart � Nghost ; . . . ; istart � 1Þ ! �fm; Frgðistart þ Nghost � 1; . . . ; istartÞ;

Right : fq; E; Ergðiend þ 1; . . . ; iend þ NghostÞ ! fq; E; Ergðiend; . . . ; iend � Nghost þ 1Þ;
fm; Frgðiend þ 1; . . . ; iend þ NghostÞ ! �fm; Frgðiend; . . . ; iend � Nghost þ 1Þ:
Inflow boundary conditions
Left : Uðistart � Nghost ; . . . ; istart � 1Þ ! U0ðistart � Nghost ; . . . ; istart � 1Þ;
Right : Uðiend þ 1; . . . ; iend þ NghostÞ ! U0ðiend þ 1; . . . ; iend þ NghostÞ:
Appendix E. Simpler system for investigation

To illustrate how some systems of hyperbolic balance laws with dual multiscale behavior reduce to non-stiff systems,
consider the following set of partial differential equations:
qt þmx ¼ 0; ð128Þ
mt þ qx ¼ rf ; ð129Þ
et þ Cfx ¼ Crðq� eÞ; ð130Þ
ft þ Cex ¼ �Crf ; ð131Þ
where the terms appearing in the above system do not directly correspond with material and radiation quantities. Eqs. (128)
and (129) define the slow (i.e., macroscopic) hyperbolic system, which has a wave speed of unity; while Eqs. (130) and (131)
define the fast (i.e., microscopic) hyperbolic system, which has a wave speed of C. Stiffness associated with the different wave
speeds defines one multiscale behavior. Additionally, the non-zero source terms in Eqs. (129)–(131) are augmented by a
magnitude r which may be small or large with respect to unity and defines the other multiscale behavior. In some parameter
regime of C and r, one expects e ? q because the source terms enable the relaxation of some of the components in the sys-
tem. If one assumes that there is a small parameter �� 1 such that C,r ? 1/� and one employs methods from perturbation
theory to construct the following series for e and f:
e ¼ e0 þ �e1 þ �2e2 þ �3e3 þ � � � ; ð132Þ
f ¼ f0 þ �f1 þ �2f2 þ �3f3 þ � � � ; ð133Þ
after matching terms of like order in �, one arrives at the following reduced system of equations which exhibits no stiffness
and has a well-defined solution:
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qt þmx ¼ 0; ð134Þ
mt þ 2qx ¼ 0þOð�2Þ; ð135Þ
et � exx ¼ 0þOð�2Þ: ð136Þ
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